Historische Simulation-VaR < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Thema: Historische Simulation
Eine long-Position mit Marktwert 1 Mio. Euro in Deutsche Bank-Aktien am 30.4.2008 wird analysiert. Die Kurshistorie beginnt mit folgenden Werten (rechts stehen die logarithmische Kursänderungen)
30.04.08 76.97 0,0061
29.04.08 76,50 -0,0035
28.04.08 76.77 0,0076
25.04.08 76.19 0,0082
24.04.08 75.57 0,0105
...
Die Zeitreihe umfasst alle Kurse bis zum 19.12.2007. Das 5%-Quantil der logarithmischen Kursänderungen ist hier -0,0298. Dementsprechend ist der VaR mit Konfidenzniveau 95% bei Verwendung einer Historischen Simulation mit Haltedauer ein Tag bei der vorliegenden Zeitreihe
gleich
1Mio. [mm] Euro\cdot e^{-0,0298}-1 [/mm] Mio [mm] Euro\approx [/mm] -29.360 Euro. |
Hallo zusammen!
Habe mal wieder ne Frage zur Berechnung des VaR. In dem Buch steht zur historischen Simulation folgendes:
[mm] \textbf{1. Gehen wir von n Risikofaktoren} R_{1/250,i} \textbf{aus, für die jeweils N historische Beobachtungen vorliegen. Die Werte werden in einer Matrix zusammengefasst:}
[/mm]
In diesem Beispiel haben wir nur einen Risikofaktor , also [mm] R_{1/250,1}=logatihmische [/mm] Kursänderung und N =91 (entspricht der Anzahl der Werktage zwischen dem 19.12.07 und 30.04.2008).
Die Matrix sieht dann wie folgt aus
[mm] \begin{pmatrix} R^1_{1/250,1} \\ R^2_{1/250,1} \\\vdots\\R^N_{1/250,1} \\ \end{pmatrix}
[/mm]
[mm] \textbf{2. Das zu untersuchende Portfolio bestehe aus M Finanzinstrumenten mit Werten } PV_l(S_{0,1},...,S_{0,n}),l\in\{1,...M\}
[/mm]
In unserem Beispiel haben wir nur ein Finanzinstrument und einen Marktparameter [mm] S_{0,1}, [/mm] das Portfolio hat den heutigen Wert 1 Mio Euro, also [mm] PV(S_{0,1})=1 [/mm] Mio Euro
[mm] \textbf{Durch Anwendung des i-ten Risikofaktors auf den Marktparameter} S_{0,i} \textbf{ergeben sich N P\&L-Szenarien.} [/mm] In unserem Fall ergeben sich 91P&L-Szenarien.
[mm] \textbf{3. Die Vorgehensweise ist analog zur Monte-Carlo-Simulation}
[/mm]
Also 3.1: Die Werte [mm] S_{\triangle t,i} [/mm] am Ende der Haltedauer [mm] \triangle [/mm] t werden anhand der Risikofaktoren simuliert. Hier jetzt mit relativer Änderung
[mm] S^1_{\triangle t,1}=S_{0,1}\cdot e^{R^1_{1/250,1}}=1 Mio\cdot e^{0,0061}=1006118,643
[/mm]
[mm] S^2_{\triangle t,1}=S_{0,1}\cdot e^{R^2_{1/250,1}}=996506,1179
[/mm]
...
3.2. Jetzt wird laut Monte-Carloder Provit and Loss für jedes Szenario berechnet:
[mm] P&L_j=\sum_{l=1}^M (PV_l(S_{\triangle t,1}^j,...,S_{\triangle t,n}^j)-PV_l(S_{0,1},...,S_{0,n}))
[/mm]
In unserem Fall haben wir l=1, daher
[mm] P&L_j=(PV(S_{\triangle t,1}^j,...,S_{\triangle t,n}^j)-PV(S_{0,1},...,S_{0,n}))
[/mm]
3.3 Dann würde man die Szenarienwerte nach aufsteigender Größe sortieren und die kleinste natürlcihe Zahl [mm] k\geq N(1-\alpha)
[/mm]
berechnen. Das k-te Szenario (von den sortierten) wäre dann das VaR.
Soooo, jetzt wurde ja bei dem Beispiel der VaR ganz anders berechnet. Wo hab ich da einen Denkfehler?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Sa 03.12.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|