www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Hermitesche Matrizen
Hermitesche Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hermitesche Matrizen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:35 Do 17.06.2010
Autor: valoo

Aufgabe
Eine quadratische Matrix H über den Komplexen Zahlen heißt hermitesch, wenn [mm] H=\overline{H^{T}} [/mm]
Zeigen Sie:
1) Jede invertierbare Matrix M über [mm] \IC [/mm] lässt sich darstellen als M=H*U wobei H hermitesch ist und U unitär.
2) Zu einer hermiteschen Matrix H und zu jeder natürlichen Zahl n gibt es eine Matrix [mm] \wurzel[n]{H} [/mm] mit [mm] (\wurzel[n]{H})^{n}=H [/mm]
3) Ist H hermitesch und seien A:=H+i*E und B:=H-i*E (E: Einheitsmatrix)
a) A und B sind invertierbar
b) A und B kommutieren
c) [mm] B*A^{-1} [/mm] ist unitär und hat 1 nicht als Eigenwert

Haidiho!

Zu 1):
Na da hab ich mal so keinen blassen Schimmer, wie ich das zeigen sollte. -_-

Zu 2):
Hilft es da vielleicht, dass H konjugiert ist zu einer Diagonalmatrix über den reellen Zahlen? Denn wenn man solche potenziert muss man ja nur die Diagonaleinträge potenzieren...

Zu 3):
a) hängt doch sicherlich damit zusammen, dass H selbst nur reelle Diagonaleinträge hat...
Aber wie beweist man denn die Invertierbarkeit? Kann man irgendwie zeigen, dass die Determinanten ungleich 0 sind?
b) ist klar, kann man ja einfach ausrechnen: [mm] H^{2}+E [/mm]
c) allerdings nicht mehr so...
Warum ist das Ding denn unitär? Und 1 nicht als EW???



        
Bezug
Hermitesche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Fr 18.06.2010
Autor: wieschoo

Das sind interessante Aufgaben.

1) Ich hab mal aufgeschrieben,was man alles hat
[mm] $M^{-1}M=1_n$,$H=\overline{H^T}$,$U\overline{U^T}=1_n=\overline{U^T}U$,$\overline{U^T}=U^{-1}$. [/mm] Außerdem sollte man Darauf kommen, dass H auch invertiebar ist. (Ich bin auch noch nicht weitergekommen. Vielleicht gilft dir dass. Ich mach mir auch noch ein paar gedanken)

3) a) Was heißt denn invertierbar? (Tipp:Rang,Skalarprodukt,Eigenwerte=0?) Nimm das Gegenteil an führe es zu dem Widerspruch, das am Ende ein imaginärer Eigenwert heraus kommt.



Bezug
                
Bezug
Hermitesche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:04 Sa 19.06.2010
Autor: valoo

Zu 1):
Was ist denn wenn man die Basis aus den Spalten von M orthonormalisiert? Und U dann aus diesen Basisvektoren besteht? Gibts dann ne hermitesche Matrix, sodass das gilt?
Oder gibt es eine Matrix A zu der M unitär konjugiert ist [mm] M=U^{-1}*A*U, [/mm] sodass [mm] U^{-1}*A [/mm] hermitesch ist?

Bezug
                
Bezug
Hermitesche Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:43 Fr 09.07.2010
Autor: valoo

So, da ich gebeten wurde, die Lösungen hier niederzuschreiben:

Aufgabe 1:

w.w.: [mm] \forall M\in Gl_{n}(\IC) \exists [/mm] U, [mm] U'\in [/mm] U(n), [mm] D=diag(d_{1},...,d_{n}) [/mm] mit [mm] d_{i}\in \IR^{+}, [/mm] sodass M=U*D*U'

Es gilt: [mm] M=U*D*U'=U*D*U^{-1}*U*U' [/mm]
Setze [mm] H:=U*D*U^{-1} [/mm] und [mm] \overline{U}:=U*U' [/mm]

H ist hermitesch und positiv definit, [mm] \overline{U} [/mm] natürlich unitär


Aufgabe 3:

a)
Die beiden sind invertierbar. Wäre nämlich 0 Eigenwert so wäre i bzw. -i EW von H, aber H ist hermitesch.

c)
[mm] [B*A^{-1}]*\overline{[B*A^{-1}]^{T}}=E [/mm] (nach ein bisschen Rumrechnen...)
1 EW von [mm] B*A^{-1} \Rightarrow -i*\vec{v}=i*\vec{v} [/mm] für einen EV [mm] \vec{v} [/mm] zu 1





Bezug
        
Bezug
Hermitesche Matrizen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 24.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]