www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Herleitung der Newtoniteration
Herleitung der Newtoniteration < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung der Newtoniteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Do 06.03.2014
Autor: tschub

Aufgabe
(I)     N(x)=x mit |N'(x)|<1 und N(I)->I

         f(x)=0 /*a(x)
(II)    a(x)f(x)=0

(I)+(II)   N(x)=x+a(x)f(x)

Bestimmung von a(x)
N'(x)=1+a'(x)f(x)+a(x)f'x)=0
<=> 1+a(x)f'(x)=0
<=> a(x)=-1/f'(x)

=>  N(x)=x-f(x)/f'(x)

Meine Frage dazu ist:
1.Warum ist a'(x)=0, es müsste doch als Ableitung: a'(x)=f''(x)/(f'(x))² rauskommen...
2.Setze ich N'(x)=0 damit die Kontraktion garantiert ist oder was ist der Grund dafür?

Besonders zu "warum fliegt a'(x) raus" wäre ich für Antworten sehr dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Herleitung der Newtoniteration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Do 06.03.2014
Autor: Sax

Hi,

> (I)     N(x)=x mit |N'(x)|<1 und N(I)->I
>  
> f(x)=0 /*a(x)
>  (II)    a(x)f(x)=0
>  
> (I)+(II)   N(x)=x+a(x)f(x)
>  
> Bestimmung von a(x)
>  N'(x)=1+a'(x)f(x)+a(x)f'x)=0
>  <=> 1+a(x)f'(x)=0

>  <=> a(x)=-1/f'(x)

>  
> =>  N(x)=x-f(x)/f'(x)

>  Meine Frage dazu ist:
>  1.Warum ist a'(x)=0, es müsste doch als Ableitung:
> a'(x)=f''(x)/(f'(x))² rauskommen...

Es ist f(x)=0  (besser: [mm] f(x_0)=0) [/mm]

>  2.Setze ich N'(x)=0 damit die Kontraktion garantiert ist
> oder was ist der Grund dafür?

Damit die Konvergenz besonders gut ist.

>  
> Besonders zu "warum fliegt a'(x) raus" wäre ich für
> Antworten sehr dankbar!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß Sax.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]