Hauptsatz der Differentialr. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:58 Di 12.04.2005 | Autor: | diecky |
Hey liebe Leutz :)
Ich hab da mal ne Frage.
Ich habe folgende Aufgabe gegeben:
"Beim Beweis des Hauptsatzes benutzt man folgende Ungleichungen
f monoton steigend, h>0 :
h*f(x) < Ia (x+h) - Ia (x) < h*f(x+h)
Erläutere anhand einer Skizze, welche Bedeutung die einzelnen Teile dieser Ungleichung besitzen."
Hab mir jetzt überlegt so eine Zeichnung mit Ober-und Untersumme zu machen, kann ich das dann auch daran erklären? Weiß nämlich nicht so wirklich was mit "erläuterung" gemeint ist..was kann man da denn noch zu sagen, ausser, dass
h*f(x) = die Untersumme ist
Ia(x+h) - Ia (x) = die eigtl Ableitung der Integralfkt ist
und h*f(x+h) = die Obersumme ist?!
Wär nett, wenn ihr mir helfen könnt/würdet!
Mfg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:27 Di 12.04.2005 | Autor: | Max |
Hallo Nanne,
zu deiner Interpretation muss ich sagen, dass [mm] $I_a(x+h)-I_a(x)$ [/mm] nicht die Ableitung der Integralfunktion ist, sondern [mm] $\frac{I_a(x+h)-I_a(x)}{h},$, [/mm] natürlich erst für $h [mm] \to [/mm] 0$. Wenn man die ganze Gleichung durch $0$ dividiert kann man dann diese Beziehung ausnutzen. Die Deutung der Terme ist ansonsten fast richtig. Ich würde mir aber überlegen, dass $h [mm] \cdot [/mm] f(x)$ den Flächeninhalt von genau einen Rechteck angibt - genauso wie $h [mm] \cdot [/mm] f(x+h)$. Wenn du dir ein Bild machst und die Punkte $P(x|f(x))$ und $Q(x+h|f(x+h))$ einzeichnest, solltest du schnell die Rechtecke finden und die Ungleichung erläutern können. Was [mm] $I_a(x+h)-I_a(x)$ [/mm] heißt, müsstest du auch wissen.
Max
|
|
|
|