www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Hauptachsentransformation
Hauptachsentransformation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mi 16.07.2014
Autor: SturmGhost

Aufgabe
Es sei [mm] f:\IR^3 \to \IR [/mm] eine Fläche mit:

[mm] f(x,y,z):=4x^2+y^2-6yz+z^2-8x-8y+8z+12=0 [/mm]

Führen Sie eine Hauptachsentransformation für f durch und geben Sie die Normalform ~f der Fläche an.

Ich bin bei dieser Aufgabe eig. weit gekommen allerdings weiß ich nicht wie ich am Ende weitermachen soll.

Ich kürze mal ein wenig ab:

A= [mm] \pmat{ 4 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 1 } [/mm]

Deren Eigenwerte sind [mm] \lambda=4,4,-2 [/mm]

Die orthogonale Transformationsmatrix Q ist:

[mm] Q=\pmat{ 1 & 0 & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} } [/mm]

Angewendet wird nun

x=Qy

es ergibt sich

[mm] f(x)=y^{T}Dy+2b^{T}Qy+c=0 [/mm]

mit

[mm] y=\vektor{u \\ v \\ w} [/mm]

Ich erhalte also

[mm] f(x)=\pmat{ u & v & w }^{T}\pmat{ 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2}\vektor{u \\ v \\ w}+2\pmat{ -4 & -4 & 4 }^{T}\pmat{ 1 & 0 & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} }\pmat{ u \\ v \\ w }+12=0 [/mm]

Alles ausgeklammert und die *2 weggelassen (warum überhaupt?):

[mm] 4u^2+4v^2-2w^2-4u+4\sqrt{2}v+12=0 [/mm]

Quadratisch Ergänzt:

[mm] 4((u-\bruch{1}{2})^2+\bruch{11}{4})+4((v+\bruch{1}{\sqrt{2}})^2-\bruch{1}{2})-2w^2=0 [/mm]

Ist das jetzt die Normalform? Was soll ich daran erkennen können? Oder muss ich noch etwas tun? Bin etwas ratlos bei diesem Verfahren.

        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mi 16.07.2014
Autor: MathePower

Hallo SturmGhost,

> Es sei [mm]f:\IR^3 \to \IR[/mm] eine Fläche mit:
>  
> [mm]f(x,y,z):=4x^2+y^2-6yz+z^2-8x-8y+8z+12=0[/mm]
>  
> Führen Sie eine Hauptachsentransformation für f durch und
> geben Sie die Normalform ~f der Fläche an.
>  Ich bin bei dieser Aufgabe eig. weit gekommen allerdings
> weiß ich nicht wie ich am Ende weitermachen soll.
>  
> Ich kürze mal ein wenig ab:
>  
> A= [mm]\pmat{ 4 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 1 }[/mm]
>  
> Deren Eigenwerte sind [mm]\lambda=4,4,-2[/mm]
>  
> Die orthogonale Transformationsmatrix Q ist:
>  
> [mm]Q=\pmat{ 1 & 0 & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} }[/mm]
>  
> Angewendet wird nun
>  
> x=Qy
>  
> es ergibt sich
>
> [mm]f(x)=y^{T}Dy+2b^{T}Qy+c=0[/mm]
>
> mit
>
> [mm]y=\vektor{u \\ v \\ w}[/mm]
>  
> Ich erhalte also
>  
> [mm]f(x)=\pmat{ u & v & w }^{T}\pmat{ 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2}\vektor{u \\ v \\ w}+2\pmat{ -4 & -4 & 4 }^{T}\pmat{ 1 & 0 & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} }\pmat{ u \\ v \\ w }+12=0[/mm]
>  


[ok]


> Alles ausgeklammert und die *2 weggelassen (warum
> überhaupt?):
>  
> [mm]4u^2+4v^2-2w^2-4u+4\sqrt{2}v+12=0[/mm]

>


Der lineare Teil ist noch mit 2 zu mulitplizieren:

[mm]4u^2+4v^2-2w^2-4u*\blue{2}+4\sqrt{2}v*\blue{2}+12=0[/mm]  


> Quadratisch Ergänzt:
>  
> [mm]4((u-\bruch{1}{2})^2+\bruch{11}{4})+4((v+\bruch{1}{\sqrt{2}})^2-\bruch{1}{2})-2w^2=0[/mm]
>  
> Ist das jetzt die Normalform? Was soll ich daran erkennen
> können? Oder muss ich noch etwas tun? Bin etwas ratlos bei
> diesem Verfahren.


Hier hast Du durch die quadratische Ergänzung eine nochmalige Transformation.

Setze z.B. r:=u+c, s:=v+d, t:=w+e


Gruss
MathePower

Bezug
                
Bezug
Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 16.07.2014
Autor: SturmGhost

Hm, warum klammert man laut Skript erst die 2 aus und schmeißt die dann wieder rein?

Du meinst ich soll die Klammern substituieren?

[mm] 4(\alpha^2+\bruch{11}{4})+4(\beta^2-\bruch{1}{2})-2w^2=0 [/mm]


Edit: Habe noch einmal mit der *2 gerechnet und nun habe ich:

[mm] 4(u-1)^2+4(v+\sqrt{2})^2-2w^2=0 [/mm]

Also wenn ich mal die Klammern substituieren:

[mm] 4\alpha^2+4\beta^2-2w^2=0 [/mm]

Bin ich damit fertig?

Bezug
                        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Do 17.07.2014
Autor: MathePower

Hallo SturmGhost,

> Hm, warum klammert man laut Skript erst die 2 aus und
> schmeißt die dann wieder rein?

>


Keine Ahnung.


> Du meinst ich soll die Klammern substituieren?
>


Ja.


> [mm]4(\alpha^2+\bruch{11}{4})+4(\beta^2-\bruch{1}{2})-2w^2=0[/mm]
>  
> Edit: Habe noch einmal mit der *2 gerechnet und nun habe
> ich:
>  
> [mm]4(u-1)^2+4(v+\sqrt{2})^2-2w^2=0[/mm]
>  
> Also wenn ich mal die Klammern substituieren:
>  
> [mm]4\alpha^2+4\beta^2-2w^2=0[/mm]
>
> Bin ich damit fertig?


Jetzt kannst Du noch eine Schönheitskorrektur anbringen,
um den Typ zu charakterisieren, wobei Du das auch jetzt schon kannst:

[mm]\tilde{\alpha}=2\alpha, \ \tilde{\beta}=2\beta, \ \tilde{w}=\wurzel{2}w[/mm]

Das liefert dann:

[mm]\tilde{\alpha}^{2}+\tilde{\beta}^{2}-\tilde{w}^{2}=0[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]