Gruppenephimorphismus < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:56 Mo 02.05.2005 | Autor: | Reaper |
Hallo hab da ein Beispiel was schon gelöst ist und ich auch versteh nur an den Details haberts halt noch.
Bsp.: Zeigen Sie: Seien [mm] (G_{1},o_{1}) [/mm] und [mm] (G_{2},o_{2}) [/mm] Gruppen und sei [mm] h:G_{1} [/mm] -> [mm] G_{2} [/mm] ein Gruppenephimorphismus. (surjektiv) Dann gilt:
[mm] (G_{1},o_{1}) [/mm] ist abelsch -> [mm] (G_{2},o_{2}) [/mm] ist abelsch
z.z.: [mm] g_{2} o_{2} g_{2}' [/mm] = [mm] g_{2}' o_{2} g_{2}
[/mm]
Lösung:
[mm] g_{2} o_{2} g_{2}' [/mm] = [mm] h(g_{1}) o_{2} h(g_{1}') [/mm] = [mm] h(g_{1} o_{1} g_{1}')
[/mm]
= [mm] h(g_{1}' o_{1} g_{1}) [/mm] = [mm] h(g_{1}') o_{2} h(g_{1}) [/mm] = [mm] g_{2}' o_{2} g_{2}
[/mm]
Ich kapier den Beweis, außer.....
Was ich jetzt noch nicht ganz kapiert hab ist was es eigentich für einen
Unterschied machen würde wenn anstatt einem Gruppenephimorphismus
ein Gruppenhomomorphismus gegeben wäre bzw. was bewirkt eigentlcih
der Ephimorphismus in dem Beispiel, da der Beweis eigentlich die Definitionen zum Homomorphismus verwendet. Ich weiß schon das
ein Gruppenephimorphismus automatisch auch ein Homomorphismus ist oder liege ich da falsch. Homorphismus beschreibt das es so eine Abbildung überhaupt gibt und Ephimorphismus die Art der Abbildung(surjektiv in dem Fall). Blick da noch nicht ganz durch.
|
|
|
|
Ein Epimorphismus ist insbesondere ein Homomorphismus.
Die surjektivität brauchst du auf jeden Fall, um den Schritt machen zu können, in dem du deine Element aus deiner zweiten Gruppe mit Hilfe von h und ihren diesbezüglichen Urbildern in der ersten ausdrücken zu können. Wäre h nicht surjektiv, könntest du dir nicht sicher sein, dass dieses Urbild, das du verwendest, überhaupt exisiert.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:53 Mo 02.05.2005 | Autor: | Reaper |
Hallo
Danke für die Antwort.
Das mit der Surjektivität ist mir jetzt klar. Nur der Begriff stört mich noch ein bißchen.
Ein Epimorphismus ist insbesondere ein Homomorphismus.
Also ist jeder Homomorphismus ein Epimorphismus?
|
|
|
|
|
Freut mich, dass ich helfen konnte.
Was die Begriffe angeht... Homomorphismus bedeutet auf gutdeutsch nichts anderes als "lineare Abbildung", d.h. deine Bedingungen
(x+y)[mm] \alpha=x \alpha+y \alpha[/mm] und [mm](k*x) \alpha=k*(x \alpha)[/mm] erfüllt sind.
Darauf aufbauend gibt es dann die Begriffe Epimorphismus(zusätzlich surj), Monomorphismus(zus. inj.) Isomorphismus (bij) Endomorphismus (zwischen gleichen Räumen) und Automorphismus (Endomorphismus und Isomorphismus)
Das heißt, i.A. ist ein Homomorphismus kein Epimorphismus
Hoffe ich konnte auch diesmal helfen, San
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:36 Mo 02.05.2005 | Autor: | Reaper |
Hallo
Danke..jetzt ist das endlcih einmal geklärt.
Ich frage mich nur die ganze Zeit ob das Beispiel zu lösen wäre wenn nur
Homomorphismus gegeben wäre. Eigentlcih schon denn dann müsste ich
hald selber herausfinden dass die Abbildung surjektiv sein muss um die Aufgabe lösen zu können oder?
|
|
|
|
|
Nun ja, eigentlich ist in diesem Fall das surjektive h in den Vor gegeben. Die Bedingung, dass das mit den abelschen Gruppen funktioniert, ist die Existenz eines Gruppenepimorphismus'. Wenn nur ein Homomorphismus gegeben wäre, hättest du keine Grundlage um zu rechnen, so wie ich das sehe.
Nehmen wir an, in den Vor stünde: "es ex. ein Homomorphismus h mit..." Dann kannst du nicht einfach sagen, dass dieser Homomorphismus surjektiv sein muss, da es wahrscheinlich auch Homorphismen von [m]G_1[/m] nach [m]G_2[/m] gibt, die die gegebenen Voraussetzungen erfüllen, aber nicht zwingend surjektiv sind und wenn es dir noch so hilfreich wäre, es für deinen Beweis so hinzubasteln ;)
Hoffentlich habe ich mich gerade nicht zu sehr verhaspelt ,
Gruß, San
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:19 Mo 02.05.2005 | Autor: | Reaper |
Danke für die Erklärung
|
|
|
|