www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Gruppenbeweis
Gruppenbeweis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Mo 27.07.2015
Autor: rsprsp

Aufgabe
Zeigen Sie:
(G,·) sei eine Gruppe. Dann gilt für alle a ∈ M, m, n ∈ Z: [mm] a^{m+n} [/mm] = [mm] a^m [/mm] · [mm] a^n [/mm] und [mm] (a^m)^n= [/mm] a^(m·n)

G1-Assoziativ
[mm] a^{(m+n)+l)} [/mm] = [mm] (a^m [/mm] * [mm] a^n) [/mm] * [mm] a^l [/mm] = [mm] a^m [/mm] * [mm] a^n [/mm] * [mm] a^l [/mm] = [mm] a^m [/mm] * ( [mm] a^n [/mm] * [mm] a^l) [/mm] = [mm] a^{(m+n)+l)} [/mm]
G2-neutrales Element
[mm] a^{m+e} [/mm] = [mm] a^m [/mm] * [mm] a^e [/mm] = [mm] a^m, [/mm] wenn e=0
G3-inverses Element
0 = [mm] a^{m+m^{-1}} [/mm] = [mm] a^m [/mm] * [mm] a^{m^{-1}} [/mm] = [mm] a^m [/mm] * [mm] a^{-m} [/mm] = 0

Ist mein Ansatz richtig ?

        
Bezug
Gruppenbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Di 28.07.2015
Autor: tobit09

Hallo rsprsp!


> Zeigen Sie:
>  (G,·) sei eine Gruppe. Dann gilt für alle a ∈ M,

Hier soll es wohl [mm] $a\in [/mm] G$ statt [mm] $a\in [/mm] M$ heißen.

> m, n
> ∈ Z: [mm]a^{m+n}[/mm] = [mm]a^m[/mm] · [mm]a^n[/mm] und [mm](a^m)^n=[/mm] a^(m·n)


>  G1-Assoziativ
>  [mm]a^{(m+n)+l)}[/mm] = [mm](a^m[/mm] * [mm]a^n)[/mm] * [mm]a^l[/mm] = [mm]a^m[/mm] * [mm]a^n[/mm] * [mm]a^l[/mm] = [mm]a^m[/mm] *
> ( [mm]a^n[/mm] * [mm]a^l)[/mm] = [mm]a^{(m+n)+l)}[/mm]
> G2-neutrales Element
>  [mm]a^{m+e}[/mm] = [mm]a^m[/mm] * [mm]a^e[/mm] = [mm]a^m,[/mm] wenn e=0
>  G3-inverses Element
>  0 = [mm]a^{m+m^{-1}}[/mm] = [mm]a^m[/mm] * [mm]a^{m^{-1}}[/mm] = [mm]a^m[/mm] * [mm]a^{-m}[/mm] = 0
>
> Ist mein Ansatz richtig ?

Du scheinst die Aufgabenstellung missverstanden zu haben und versuchst anscheinend irgendwie, die definierenden Gruppeneigenschaften [mm] $G_1$, $G_2$ [/mm] und [mm] $G_3$ [/mm] zu verifizieren.
[mm] $G_1$, $G_2$ [/mm] und [mm] $G_3$ [/mm] zu verifizieren ist nur dann sinnvoll, wenn man nachweisen möchte, dass eine gewisse Menge mit einer gewissen Verknüpfung eine Gruppe bildet.
Darum geht es in dieser Aufgabe jedoch nicht.

In der Aufgabe wird zunächst als Annahme VORAUSGESETZT, dass $(G,*)$ eine Gruppe ist.
(Wie G genau aussieht, wissen wir gar nicht.)
Zu zeigen sind nun für beliebig vorgegebene [mm] $a\in [/mm] G$, [mm] $m,n\in\IZ$ [/mm] die Gültigkeit der Gleichungen

     1. [mm]a^{m+n}[/mm] = [mm]a^m[/mm] · [mm]a^n[/mm]

und

     2. [mm](a^m)^n=[/mm] [mm] $a^{m*n}$. [/mm]


Die wichtigste "Zutat" dazu ist die Definition von [mm] $a^n$ [/mm] für [mm] $a\in [/mm] G$ und [mm] $n\in\IZ$. [/mm]
Schlage sie nach und poste sie am besten hier, damit man auf eure Formulierung der Definition eingehen kann.

(Da diese Definition bestimmt unterschiedliche Fälle unterscheidet, wird der Beweis obiger Rechenregeln 1. und 2. wohl nicht ohne Fallunterscheidungen auskommen.)


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]