www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Grenzwerte
Grenzwerte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 18:28 Di 08.04.2008
Autor: mathegenie84

Aufgabe
[mm] \limes_{z\rightarrow\infty}= -\bruch{1}{a}e^{-az}*(z+\bruch{1}{a})+\bruch{1}{a²}= [/mm] ????

Hallo Zusammen
sollen eine Grenzwertbetrachtung durchführen...
wie gehe ich bei der Aufgabe vor????


        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Di 08.04.2008
Autor: leduart

Hallo
z reell oder Komplex?
was hast du schon überlegt? Du kennst doch die Forenregeln.
Gruss leduart

Bezug
        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Di 08.04.2008
Autor: Jedec


> [mm]\limes_{z\rightarrow\infty}= -\bruch{1}{a}e^{-az}*(z+\bruch{1}{a})+\bruch{1}{a²}=[/mm]
> ????
>  Hallo Zusammen
>  sollen eine Grenzwertbetrachtung durchführen...
>  wie gehe ich bei der Aufgabe vor????

Also ich würde schauen nach was die einzelnen Teile streben:

[mm] -\bruch{1}{a}e^{-az} \rightarrow0 [/mm] für a>0 ; bzw [mm] \rightarrow-\infty [/mm] für a<0

[mm] (z+\bruch{1}{a}) \rightarrow\infty [/mm] , da [mm] \bruch{1}{a} [/mm] konstant

[mm] \bruch{1}{a²} \rightarrow \bruch{1}{a²} [/mm]

Da Pontenzen für große Hochzahlen stärker sind, überwiegt das [mm] \rightarrow0 [/mm] für a>0 gegenüber von [mm] \rightarrow\infinity [/mm]
Somit strebt der ganze Term nach [mm] \bruch{1}{a²} [/mm] für a>0 , da es konstant ist und immer dazugezählt wird.
Für a<0 strebt der Term dann gegen [mm] -\infinity [/mm] ,  da -*+=- das [mm] \bruch{1}{a²} [/mm] hat keinen Einfluss mehr...

Wenn z eine komplexe Zahl sein soll, vergiss alles, davon hab' ich keine Ahnung. Da ich allerdings selber schon mein Mathe-Abi hinter mir hab' und von komplexen Zahlen nichts weiß, denk ich, dass z wohl eine reelle Zahl sein soll...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]