Grenzwert von 0 verschieden < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien [mm] $(c_{n})_{n\in\IN}$ [/mm] und [mm] $(d_{n})_{n\in\IN}$ [/mm] konvergente Folgen reeller Zahlen mit Grenzwerten c und d. Man zeige, dass dann für beliebige [mm] $\gamma, \delta \in \IC$ [/mm] gilt: Wenn [mm] $\gamma*c+\delta*d\not= [/mm] 0 $, dann ist auch [mm] $\gamma*c_{n}+\delta*d_{n}\not= [/mm] 0$ für fast alle [mm] $n\in\IN$. [/mm] |
Hallo!
Ich habe Probleme, die obige Aufgabe exakt zu lösen.
Der Sachverhalt ist mir in sofern klar, dass wenn es unendlich viele [mm] $n\in\IN$ [/mm] gäbe mit [mm] $\gamma*c_{n}+\delta*d_{n}= [/mm] 0$, aber der Grenzwert [mm] $\gamma*c+\delta*d\not= [/mm] 0 $ ist, der Grenzwert gar keiner ist, weil es dann für [mm] $\epsilon [/mm] > 0$ mit [mm] $\epsilon [/mm] < [mm] \gamma*c+\delta*d$ [/mm] unendlich viele n's gäbe mit
[mm] $|(\gamma*c_{n}+\delta*d_{n}) [/mm] - [mm] (\gamma*c+\delta*d)| [/mm] = |0 - [mm] (\gamma*c+\delta*d)| [/mm] = [mm] |\gamma*c+\delta*d| [/mm] > [mm] \epsilon$,
[/mm]
also ein Widerspruch dazu, dass [mm] $\gamma*c+\delta*d$ [/mm] Grenzwert der Folge [mm] $(\gamma*c_{n}+\delta*d_{n})$ [/mm] wäre.
Darf man das so schreiben, oder geht es noch formaler und mehr der Aufgabenstellung entsprechender?
Grüße und danke für Eure Hilfe,
Stefan
|
|
|
|
Hallo,
> Seien [mm](c_{n})_{n\in\IN}[/mm] und [mm](d_{n})_{n\in\IN}[/mm] konvergente
> Folgen reeller Zahlen mit Grenzwerten c und d. Man zeige,
> dass dann für beliebige [mm]\gamma, \delta \in \IC[/mm] gilt: Wenn
> [mm]\gamma*c+\delta*d\not= 0 [/mm], dann ist auch
> [mm]\gamma*c_{n}+\delta*d_{n}\not= 0[/mm] für fast alle [mm]n\in\IN[/mm].
> Hallo!
>
> Ich habe Probleme, die obige Aufgabe exakt zu lösen.
>
so ist das haeufig als studien-anfaenger...
> Der Sachverhalt ist mir in sofern klar, dass wenn es
> unendlich viele [mm]n\in\IN[/mm] gäbe mit
> [mm]\gamma*c_{n}+\delta*d_{n}= 0[/mm], aber der Grenzwert
> [mm]\gamma*c+\delta*d\not= 0[/mm] ist, der Grenzwert gar keiner ist,
> weil es dann für [mm]\epsilon > 0[/mm] mit [mm]\epsilon < \gamma*c+\delta*d[/mm]
> unendlich viele n's gäbe mit
[mm]\epsilon<\ldots [/mm]
ist ein wenig kritisch, wenn rechts eine komplexe zahl steht. Wenn du aber betragstriche um die komplexe zahl machst, sollte es so gehen.
>
> [mm]|(\gamma*c_{n}+\delta*d_{n}) - (\gamma*c+\delta*d)| = |0 - (\gamma*c+\delta*d)| = |\gamma*c+\delta*d| > \epsilon[/mm],
>
> also ein Widerspruch dazu, dass [mm]\gamma*c+\delta*d[/mm] Grenzwert
> der Folge [mm](\gamma*c_{n}+\delta*d_{n})[/mm] wäre.
>
weil naemlich sonst ab einem bestimmten [mm] $n_0$ [/mm] die obige differenz immer kleiner als epsilon sein muesste, ja.
> Darf man das so schreiben, oder geht es noch formaler und
> mehr der Aufgabenstellung entsprechender?
>
ich denke, im ersten schritt sollst du argumentieren, dass [mm] $\gamma*c_{n}+\delta*d_{n}$ [/mm] tatsaechlich gegen [mm] $\gamma*c+\delta*d$ [/mm] konvergiert, was aus den grundlegenden rechenregeln fuer grenzwerte folgt.
alternativ kann man dann auch so vorgehen: die aufgabe reduziert sich auf: ist [mm] $z_n$ [/mm] eine komplexe folge, die gegen [mm] $z\ne [/mm] 0$ konvergiert, dann ist auch [mm] $z_n\ne [/mm] 0$ fuer f.a. n.
kennt ihr den begriff des haeufungspunktes? Waere [mm] $z_n=0$ [/mm] fuer unendlich viele n, so waere $0$ ein HP der folge. konvergente folgen haben aber nur einen HP, naemlich den grenzwert.
gruss
Matthias
> Grüße und danke für Eure Hilfe,
>
> Stefan
>
|
|
|
|
|
Hallo MatthiasKr,
> > Ich habe Probleme, die obige Aufgabe exakt zu lösen.
> >
> so ist das haeufig als studien-anfaenger...
> > Der Sachverhalt ist mir in sofern klar, dass wenn es
> > unendlich viele [mm]n\in\IN[/mm] gäbe mit
> > [mm]\gamma*c_{n}+\delta*d_{n}= 0[/mm], aber der Grenzwert
> > [mm]\gamma*c+\delta*d\not= 0[/mm] ist, der Grenzwert gar keiner ist,
> > weil es dann für [mm]\epsilon > 0[/mm] mit [mm]\epsilon < \gamma*c+\delta*d[/mm]
> > unendlich viele n's gäbe mit
>
> [mm]\epsilon<\ldots [/mm]
>
> ist ein wenig kritisch, wenn rechts eine komplexe zahl
> steht. Wenn du aber betragstriche um die komplexe zahl
> machst, sollte es so gehen.
Ja, habe ich vergessen, danke.
>
> >
> > [mm]|(\gamma*c_{n}+\delta*d_{n}) - (\gamma*c+\delta*d)| = |0 - (\gamma*c+\delta*d)| = |\gamma*c+\delta*d| > \epsilon[/mm],
>
> >
> > also ein Widerspruch dazu, dass [mm]\gamma*c+\delta*d[/mm] Grenzwert
> > der Folge [mm](\gamma*c_{n}+\delta*d_{n})[/mm] wäre.
> >
>
> weil naemlich sonst ab einem bestimmten [mm]n_0[/mm] die obige
> differenz immer kleiner als epsilon sein muesste, ja.
>
> > Darf man das so schreiben, oder geht es noch formaler und
> > mehr der Aufgabenstellung entsprechender?
> >
>
> ich denke, im ersten schritt sollst du argumentieren, dass
> [mm]\gamma*c_{n}+\delta*d_{n}[/mm] tatsaechlich gegen
> [mm]\gamma*c+\delta*d[/mm] konvergiert, was aus den grundlegenden
> rechenregeln fuer grenzwerte folgt.
>
> alternativ kann man dann auch so vorgehen: die aufgabe
> reduziert sich auf: ist [mm]z_n[/mm] eine komplexe folge, die gegen
> [mm]z\ne 0[/mm] konvergiert, dann ist auch [mm]z_n\ne 0[/mm] fuer f.a. n.
>
> kennt ihr den begriff des haeufungspunktes? Waere [mm]z_n=0[/mm]
> fuer unendlich viele n, so waere [mm]0[/mm] ein HP der folge.
> konvergente folgen haben aber nur einen HP, naemlich den
> grenzwert.
Nein, Häufungspunkte hatten wir noch nicht, und so wie es aussieht, werden wir die auch nie haben (komisch...). Naja, habs nach der ersten von dir vorgeschlagenen Variante gemacht, zu dem Zeitpunkt, wo wir die Übungen hatten, hatten wir auch die komplexen Zahlen noch gar nicht eingeführt - geht irgendwie alles drunter und drüber hier.
Naja. Danke für deinen Hinweis mit dem Zeigen, dass ja [mm]\gamma*c+\delta*d[/mm] überhaupt erstmal Grenzwert von [mm]\gamma*c_{n}+\delta*d_{n}[/mm] ist, das hätte ich fast vergessen
Grüße,
Stefan
|
|
|
|