www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert mit Riemann. Summen
Grenzwert mit Riemann. Summen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert mit Riemann. Summen: Bitte um Tipp.
Status: (Frage) beantwortet Status 
Datum: 15:13 Do 27.04.2006
Autor: DeusRa

Aufgabe
Berechnen Sie den Grenzwert [mm] \limes_{n\rightarrow\infty}(\summe_{k=1}^{n}\bruch{1}{n+k}) [/mm] mittels Riemannscher Summen.

Also,
mir fehlt wohl die entscheidene Idee um diese Aufgabe zu lösen.
Ich weiß, dass
[mm] \summe_{k=1}^{n}\bruch{1}{n+k}=\summe_{k=1}^{2n}(-1)^{k+1}*\bruch{1}{k} [/mm] ist.
Und ich weiß, dass die Riemannsche Summe so definiert ist:
[mm] \summe_{i=1}^{n}f(\nu)*(x_i-x_{i-1}). [/mm] Wobei [mm] \nu\in $]x_{i-1},x_i[$. [/mm] Und die [mm] x_i [/mm] sind die Unterteilungen eines Intervalls. z.B. [mm] a=x_1
Nun fehlt mir die Verbindung zwischen diesen Infos (oder mir fehlen noch Infos) um diese Aufgabe zu lösen.
Nun weiß ich jedoch, dass man sich ein [mm] x_i [/mm] definieren muss (also eine Unterteilung des Intervalls) und eigentlich auch eine Funktion f, oder nicht ?!??

Jetzt weiß ich nicht wie denn diese Aufgabe zu lösen ist.
Wäre für jeden Tipp dankbar.

        
Bezug
Grenzwert mit Riemann. Summen: Ich habs....
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Fr 28.04.2006
Autor: DeusRa

Habe mir meine Frage schon selbst beantwortet.
Falls jemand die Lösung habe möchte, dann soll er sich melden, dann poste ich diese.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]