Grenzwert einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 01:12 Mo 06.05.2013 | Autor: | Rapo |
Hallo zusammen,
ich habe hier eine Reihe gegeben von der ich weiß, dass sie gegen [mm] \bruch{1}{4} [/mm] konvergiert. Die Reihe lautet wie folgt: [mm] \summe_{i=1}^{n} \bruch{1}{n(n+1)(n+2)}.
[/mm]
In der Vorlesung haben wir die Reihe zuerst per Partialbruchzerlegung und Koeffizientenvergleich in mehrere Reihen zerlegt so dass folgendes herauskommt: [mm] \summe_{i=1}^{n} \bruch{1}{2n} [/mm] + [mm] \summe_{i=1}^{n} \bruch{1}{2n+4} [/mm] - [mm] \summe_{i=1}^{n} \bruch{1}{n+1}.
[/mm]
Wenn ich nun z.B. die ersten drei Summanden aufschreibe steht dort folgendes: [mm] \bruch{1}{2}+\bruch{1}{6}-\bruch{1}{2}+\bruch{1}{4}+\bruch{1}{8}-\bruch{1}{3}+\bruch{1}{6}+\bruch{1}{10}-\bruch{1}{4}+....
[/mm]
Bis hierhin sind alles Vorlesungsmitschriften. Nun soll die Reihe wie gesagt gegen [mm] \bruch{1}{4} [/mm] konvergieren. Ich habe mehrere Stunden vor dieser Reihe verbracht und kann einfach nicht nachvollziehen wie man darauf kommt. Für jegliche Hilfe wäre ich sehr dankbar!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:50 Mo 06.05.2013 | Autor: | Marcel |
Hallo,
> Hallo zusammen,
>
> ich habe hier eine Reihe gegeben von der ich weiß, dass
> sie gegen [mm]\bruch{1}{4}[/mm] konvergiert. Die Reihe lautet wie
> folgt: [mm]\summe_{i=1}^{n} \bruch{1}{n(n+1)(n+2)}.[/mm]
aua... achte doch bitte auf den Laufindex, der anstatt [mm] $i\,$ [/mm] wohl [mm] $n\,$ [/mm] heißen
mag und die obere Grenze ist sicher [mm] $\infty$ [/mm] und nicht [mm] $n\,.$
[/mm]
> In der Vorlesung haben wir die Reihe zuerst per
> Partialbruchzerlegung und Koeffizientenvergleich in mehrere
> Reihen zerlegt so dass folgendes herauskommt:
> [mm]\summe_{i=1}^{n} \bruch{1}{2n}[/mm] + [mm]\summe_{i=1}^{n} \bruch{1}{2n+4}[/mm]
> - [mm]\summe_{i=1}^{n} \bruch{1}{n+1}.[/mm]
>
> Wenn ich nun z.B. die ersten drei Summanden aufschreibe
> steht dort folgendes:
> [mm]\bruch{1}{2}+\bruch{1}{6}-\bruch{1}{2}+\bruch{1}{4}+\bruch{1}{8}-\bruch{1}{3}+\bruch{1}{6}+\bruch{1}{10}-\bruch{1}{4}+....[/mm]
>
> Bis hierhin sind alles Vorlesungsmitschriften. Nun soll die
> Reihe wie gesagt gegen [mm]\bruch{1}{4}[/mm] konvergieren. Ich habe
> mehrere Stunden vor dieser Reihe verbracht und kann einfach
> nicht nachvollziehen wie man darauf kommt. Für jegliche
> Hilfe wäre ich sehr dankbar!
Für jedes $N [mm] \in \IN$ [/mm] gilt
[mm] $$\sum_{n=1}^N \frac{1}{n*(n+1)*(n+2)}=\sum_{n=1}^N \frac{1}{2n}+\sum_{n=1}^N \frac{1}{2n+4}-\sum_{n=1}^N \frac{1}{n+1}\,.$$
[/mm]
(Wenn ich linkerhand das [mm] $N\,$ [/mm] durch [mm] $\infty$ [/mm] ersetzen würde, darf ich das rechterhand
aber nicht bei jedem Summenzeichen tun - warum nicht?)
Das impliziert für jedes natürliche [mm] $N\,$
[/mm]
[mm] $$\sum_{n=1}^N \frac{1}{n*(n+1)*(n+2)}=\frac{1}{2}*\sum_{n=1}^N \frac{1}{n}+\frac{1}{2}*\sum_{n=1}^N \frac{1}{n+2}-\sum_{n=1}^N \frac{1}{n+1}\,,$$
[/mm]
also auch
[mm] $$2*\sum_{n=1}^N \frac{1}{n*(n+1)*(n+2)}=\sum_{n=1}^N \frac{1}{n}+\sum_{n=1}^N \frac{1}{n+2}-2*\sum_{n=1}^N \frac{1}{n+1}$$
[/mm]
bzw.
[mm] $$2*\sum_{n=1}^N \frac{1}{n*(n+1)*(n+2)}=\sum_{n=1}^N \frac{1}{n}+\sum_{n=1}^N \frac{1}{n+2}\;-\;\sum_{n=1}^N \frac{1}{n+1}\;-\;\sum_{n=1}^N \frac{1}{n+1}$$
[/mm]
bzw.
[mm] $$(\*)\;\;\;\;\;\;\;\;2*\sum_{n=1}^N \frac{1}{n*(n+1)*(n+2)}=\left(\sum_{n=1}^N \frac{1}{n}\;-\;\sum_{n=1}^N \frac{1}{n+1}\right)+\left(\sum_{n=1}^N \frac{1}{n+2}\;-\;\sum_{n=1}^N \frac{1}{n+1}\right)\,.$$
[/mm]
Schau' Dir die Klammern rechterhand mal genau an.
(P.S. Beachte: Man kann sehr einfach sowas wie
[mm] $$\sum_{n=1}^N a_{n} -\sum_{n=1}^N a_{n+m}$$
[/mm]
ausrechnen, auch ohne das in einem Zwischenschritt so
[mm] $$(a_n+...+a_N)-(a_{n+m}+a_{n+m+1}+...+a_{N+m})=...$$
[/mm]
hinzuschreiben:
[mm] $\text{(I)}\;\;\;\;\;\;\;\;\sum_{n=1}^N a_{n} -\sum_{n=1}^N a_{n+m}=\sum_{n=1}^N a_{n} -\sum_{\ell=1+m}^{N+m} a_{\ell}=\sum_{n=1}^m a_n\;+\;\sum_{n=m+1}^{N}a_n \;-\;\sum_{\ell=m+1}^{N}a_\ell\;-\;\sum_{\ell=N+1}^{N+m}a_\ell=\sum_{n=1}^m a_n\;-\;\sum_{n=N+1}^{N+m}a_n\,.$
[/mm]
[mm] $\left(\;\;=\sum_{n=1}^m a_n\;-\;\sum_{n=1}^{m}a_{N+n}=\sum_{n=1}^m (a_n-a_{N+n})\,.\right)$
[/mm]
Generell macht man überall das Gleiche: Assoziativgesetz, Kommutativgesetz
der Addition und Distributivgesetz anwenden...
Ich finde aber, die Methode mit dem "Indexshift" bzw. mit der
"Indexsubstitution" und dem Aufsplitten der Summen ist immer gut, denn
damit übt man mal das richtige Rechnen mit dem Summenzeichen!)
Wendest Du nun [mm] $\text{(I)}$ [/mm] für [mm] $a_n=\tfrac{1}{n}$ [/mm] und [mm] $m=1\,$ [/mm] an:
[mm] $$\sum_{n=1}^N \frac{1}{n}\;-\;\sum_{n=1}^N \frac{1}{n+1}=a_1-a_{N+1}=\frac{1}{1}-\frac{1}{N+1}\,.$$
[/mm]
Man könnte das auch anders machen, aber machen wir's nun so: Wendest
Du [mm] $\text{(I)}$ [/mm] für [mm] $a_{n}:=\tfrac{1}{n+1}$ [/mm] und [mm] $m=1\,$ [/mm] an:
[mm] $$\sum_{n=1}^N \frac{1}{n+1}\;-\;\sum_{n=1}^N \frac{1}{n+2}=a_1-a_{N+1}=\frac{1}{1+1}-\frac{1}{N+2}=\frac{1}{2}-\frac{1}{N+2}\,.$$
[/mm]
Verbrate diese Ergebnisse in [mm] $(\*)$ [/mm] (beachte: [mm] $\sum_{n=1}^N \frac{1}{n+2}\;-\;\sum_{n=1}^N \frac{1}{n+1}=(-1)*\left(\sum_{n=1}^N \frac{1}{n+1}\;-\;\sum_{n=1}^N \frac{1}{n+2}\right)\,.$)
[/mm]
Dann lasse (beidseitig) $N [mm] \to \infty$ [/mm] laufen, und vergesse nicht, am Ende
wieder durch [mm] $2\,$ [/mm] zu dividieren (die Multiplikation mit [mm] $2\,$ [/mm] habe ich auch
nur der besseren Übersicht wegen gemacht)!
Gruß,
Marcel
|
|
|
|