www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert der Summe
Grenzwert der Summe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert der Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Do 16.07.2015
Autor: magics

Aufgabe
[mm] \summe_{i=1}^{\infty}4^{-i} [/mm] = [mm] \bruch{1}{1 - \bruch{1}{4}} [/mm] - 1 = [mm] \bruch{1}{3} [/mm]



Hallo,

kann mir bitte jemand erklären, wie man von

[mm] \summe_{i=1}^{\infty}4^{-i} [/mm]

nach

[mm] \bruch{1}{1 - \bruch{1}{4}} [/mm] - 1

kommt?

Edit:
Ich habe es nur soweit geschafft:
[mm] \summe_{i=1}^{\infty}4^{-i} [/mm] = [mm] \summe_{i=1}^{\infty}\bruch{1}{4^i} [/mm] = [mm] \bruch{1}{4^1} [/mm] + [mm] \bruch{1}{4^2} [/mm] + [mm] \bruch{1}{4^3} [/mm] + [mm] \bruch{1}{4^4} [/mm] + ....

Gibt es Regeln, die ich anwenden kann, um das selbstständig zu lösen?



lg
magics

        
Bezug
Grenzwert der Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Do 16.07.2015
Autor: abakus

Hallo,
es ist eine geometrische Reihe (dafür gibt es eine Formel!) mit q=1/4 und dem fehlenden ersten [mm] Summanden $(\frac{1}{4})^0$. [/mm]
Gruß Abakus

Bezug
                
Bezug
Grenzwert der Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 Fr 17.07.2015
Autor: magics

Boah danke man!!!

Eigentlich total spannend! Ich hätte wirklich lust die geometrische Reihe selbst ein bisschen zu untersuchen... leider naht die Prüfung (O.O)

gruß,
magics

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]