www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Grenzwert Integral
Grenzwert Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:11 Mi 15.06.2016
Autor: Mapunzel

Aufgabe
Berechnen Sie den Granzwert [mm] \lim_{n\to\infty} \integral_{1}^{\infty}{e^{-x}sin^{n}(x) dx}. [/mm]

Hallo, kann man hier den Satz über dominierte Konvergenz anwenden?
Also die Funktionenfolge ist ja nicht negativ, messbar und punktweise existiert auch ein Grenzwert mit [mm] \lim_{n\to\infty} f_n(x)= e^{-x} [/mm] für [mm] x\neq \{x |\exists n\in\IN \mbox{ mit} x=n\pi\}. [/mm]
Oder lieg ich da falsch?
Danke im vorraus.

        
Bezug
Grenzwert Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mi 15.06.2016
Autor: fred97


> Berechnen Sie den Granzwert [mm]\lim_{n\to\infty} \integral_{1}^{\infty}{e^{-x}sin^{n}(x) dx}.[/mm]
>  
> Hallo, kann man hier den Satz über dominierte Konvergenz
> anwenden?
>  Also die Funktionenfolge ist ja nicht negativ, messbar und
> punktweise existiert auch ein Grenzwert mit
> [mm]\lim_{n\to\infty} f_n(x)= e^{-x}[/mm] für [mm]x\neq \{x |\exists n\in\IN \mbox{ mit} x=n\pi\}.[/mm]
>  
> Oder lieg ich da falsch?

Du liegst richtig

FRED

>  Danke im vorraus.  


Bezug
                
Bezug
Grenzwert Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Mi 15.06.2016
Autor: Mapunzel

Aufgabe
Berechnen sie den Grenzwert $ [mm] \lim_{n\to\infty} \integral_{1}^{\infty}{e^{-x}sin^{n}(x) dx}. [/mm] $

Vielen Dank für die schnelle Antwort, heißt also ich kann grob gesagt Grenzwert und Integral vertauschen?
Also $ [mm] \lim_{n\to\infty} \integral_{1}^{\infty}{e^{-x}sin^{n}(x) dx}= \integral_{1}^{\infty}{e^{-x}dx}$ [/mm] ?

Bezug
                        
Bezug
Grenzwert Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mi 15.06.2016
Autor: fred97


> Berechnen sie den Grenzwert [mm]\lim_{n\to\infty} \integral_{1}^{\infty}{e^{-x}sin^{n}(x) dx}.[/mm]
>  
> Vielen Dank für die schnelle Antwort, heißt also ich kann
> grob gesagt Grenzwert und Integral vertauschen?

Ja


>  Also [mm]\lim_{n\to\infty} \integral_{1}^{\infty}{e^{-x}sin^{n}(x) dx}= \integral_{1}^{\infty}{e^{-x}dx}[/mm]

Nee ! Gegen was konvergiert denn die Folge [mm] (e^{-x}sin^{n}(x) [/mm] ) fast überall ?

FRED

> ?


Bezug
                                
Bezug
Grenzwert Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mi 15.06.2016
Autor: Mapunzel

Sie konvergiert fast überall gegen 0. Und das Integral ist dann auch 0 oder? Aber was hat denn dann der punktweise Grenzwert damit zutun, ist der nur eine Voraussetzung um den Satz von Lebesgue anwenden zu können?

Bezug
                                        
Bezug
Grenzwert Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Mi 15.06.2016
Autor: fred97


> Sie konvergiert fast überall gegen 0. Und das Integral ist
> dann auch 0 oder? Aber was hat denn dann der punktweise
> Grenzwert damit zutun, ist der nur eine Voraussetzung um
> den Satz von Lebesgue anwenden zu können?

Wie lautet denn dieser Satz ???

fred


Bezug
                                                
Bezug
Grenzwert Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 Do 16.06.2016
Autor: Mapunzel

Sei [mm] (f_n) [/mm] eine Folge messbarer Funktionen, die fast überall punktweise gegen eine messbare Funktion f konvergiert.
Es gebe eine integrierbare Funktion g mit
[mm] |f(x)|\le [/mm] g(x) fast überall.
Dann ist f integrierbar und der Grenzwert der Integrale von [mm] f_n [/mm] ist sozusagen das Integral von f.
Ich glaub mich verwirrt nur dieses fast überall punktweise. Heisst dass, das die [mm] f_n [/mm] überall punktweise konvergieren ausser auf Nullmengen?

Bezug
                                                        
Bezug
Grenzwert Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Do 16.06.2016
Autor: fred97


> Sei [mm](f_n)[/mm] eine Folge messbarer Funktionen, die fast
> überall punktweise gegen eine messbare Funktion f
> konvergiert.
>  Es gebe eine integrierbare Funktion g mit
>  [mm]|f(x)|\le[/mm] g(x) fast überall.

Nein, sondern  [mm]|f_n(x)|\le[/mm] g(x) fast überall.


>  Dann ist f integrierbar und der Grenzwert der Integrale
> von [mm]f_n[/mm] ist sozusagen das Integral von f.

Sozusagen ????? Was hat das mit Mathematik zu tun ?

der Grenzwert der Integrale  von [mm]f_n[/mm] ist das Integral von f !



> Ich glaub mich verwirrt nur dieses fast überall
> punktweise. Heisst dass, das die [mm]f_n[/mm] überall punktweise
> konvergieren ausser auf Nullmengen?

Ja, ausser auf einer Nullmenge

FRED


Bezug
                                                                
Bezug
Grenzwert Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Do 16.06.2016
Autor: Mapunzel

Ok danke, dass mit den [mm] f_n [/mm] war ein Schreibfehler und "sozusagen" sollte tatsächlich nur aussagen, dass ich es als Wortgleichung geschrieben hab, weil ich die Formel nicht nochmal abtippen wollte :) Aber vielen dank, jetzt hab ich es verstanden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]