www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Grenzwert "0^0"
Grenzwert "0^0" < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert "0^0": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:36 So 23.08.2015
Autor: C11H15NO2

Aufgabe
[mm] \limes_{x\rightarrow\1 1+0}x^{\bruch{1}{2-2x}} [/mm]


Hallo
bräuchte mal Hilfe:

[mm] \limes_{x\rightarrow\1 1+0}x^{\bruch{1}{2-2x}} [/mm]

Da das [mm] 0^0 [/mm] ist forme ich um:

= [mm] e^{\bruch{1}{2-2x}lnx} [/mm]

= [mm] e^{\bruch{\bruch{1}{2-2x}}{\bruch{1}{lnx}}} [/mm]

Jetzt die Regel von l´hospital anwenden. Aber das bringt mir immer nur unbestimme Ausdrücke [mm] \bruch{\pm\infty}{\pm\infty} [/mm] Habe schon 5 mal jewels Nenner und Zähler abgeleitet abgeleitet

Lg

        
Bezug
Grenzwert "0^0": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:14 So 23.08.2015
Autor: abakus

Hallo,
man kann x=1+h substituieren und dann den Grenzwert für h gegen +0 "sehen".
Gruß Abakus

Bezug
                
Bezug
Grenzwert "0^0": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:17 So 23.08.2015
Autor: schachuzipus

Hallo,

bitte warte doch eine laufende Antwort ab, dann kannst du immer noch ergänzen.

Meine Güte nee

Bezug
        
Bezug
Grenzwert "0^0": Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 So 23.08.2015
Autor: schachuzipus

Hallo C11H15NO2,

> [mm]\limes_{x\rightarrow\1 1+0}x^{\bruch{1}{2-2x}}[/mm]


> Hallo
> bräuchte mal Hilfe:

>

> [mm]\limes_{x\rightarrow\1 1+0}x^{\bruch{1}{2-2x}}[/mm]

>

> Da das [mm]0^0[/mm] ist forme ich um:


>

> = [mm]e^{\bruch{1}{2-2x}lnx}[/mm] [ok]

>

> = [mm]e^{\bruch{\bruch{1}{2-2x}}{\bruch{1}{lnx}}}[/mm]

Schöner [mm]e^{\frac{\ln(x)}{2-2x}}[/mm]

>

> Jetzt die Regel von l´hospital anwenden. Aber das bringt
> mir immer nur unbestimme Ausdrücke
> [mm]\bruch{\pm\infty}{\pm\infty}[/mm] Habe schon 5 mal jewels Nenner
> und Zähler abgeleitet abgeleitet

Du kannst dir nach dem Umschreiben in [mm]e^{\frac{\ln(x)}{2-2x}}[/mm] die Stetigkeit der Exponentialfunktion zunutze machen:

[mm]\lim\limits_{x\to x_0}e^{f(x)}=e^{\lim\limits_{x\to x_0}f(x)}[/mm]

Betrachte also den Exponenten [mm]\frac{\ln(x)}{2-2x}[/mm]

Nun [mm]x\to 1+[/mm]:

Das ergäbe einen unbestimmten Ausdruck der Form [mm]\frac{0}{0}[/mm], also de l'Hôpital:

[mm].... =\frac{\frac{1}{x}}{-2}=-\frac{1}{2x}[/mm]

Und das strebt für [mm]x\to 1[/mm] gegen [mm]-\frac{1}{2}[/mm], das Ganze also gegen [mm]e^{-\frac{1}{2}}=\frac{1}{\sqrt e}[/mm]

Ist mein erster post seit langer Zeit, ich hoffe, ich habe nicht zuviel Unsinn erzählt ;-)

>

> Lg

Grüße

schachuzipus

Bezug
                
Bezug
Grenzwert "0^0": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:27 So 23.08.2015
Autor: C11H15NO2

Okay habs nun verstanden :-)

Vielen Dank

Bezug
        
Bezug
Grenzwert "0^0": Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 So 23.08.2015
Autor: Al-Chwarizmi


> [mm]\limes_{x\rightarrow\1 1+0}x^{\bruch{1}{2-2x}}[/mm]

> Da das [mm]0^0[/mm] ist .....    [haee]


Ich kann nicht erkennen, dass da irgendein Term der
Sorte  [mm] "0^0" [/mm]  drin stecken sollte.
Das müsstest du erläutern.
Was ich sehe, ist, dass hier ein Limes gesucht wird,
den man jedenfalls nicht elementar mittels einfacher
Regeln angeben kann.

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]