www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwert
Grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Fr 26.05.2017
Autor: DerPinguinagent

Hallo! Ich sitze gerade vor meiner Vorlesung und verstehe eine Definition nicht die mein Dozent an die Tafel geschrieben hat. Vielleicht kann einer von euch mir dass verständlich erklären.

"f(x) hat an der Stelle [mm] x_{0} [/mm] einen Grenzwert g, wenn es zu jedem beliebig kleinen [mm] \varepsilon>0 [/mm] ein Zahl [mm] \delta(\varepsilon) [/mm] gibt, sodass [mm] \vmat{ f(x)-g }<\varepsilon [/mm] ist, [mm] \forall [/mm] x für die [mm] \vmat{ x-x_{0} }<\delta [/mm] gilt.

Besitzt eine nicht stetige Funktion einen Grenzwert?

Vielen Dank im Voraus!

Der Pinguinagent

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Fr 26.05.2017
Autor: HJKweseleit


> Hallo! Ich sitze gerade vor meiner Vorlesung und verstehe
> eine Definition nicht die mein Dozent an die Tafel
> geschrieben hat. Vielleicht kann einer von euch mir dass
> verständlich erklären.
>
> "f(x) hat an der Stelle [mm]x_{0}[/mm] einen Grenzwert g, wenn es zu
> jedem beliebig kleinen [mm]\varepsilon>0[/mm] ein Zahl
> [mm]\delta(\varepsilon)[/mm] gibt, sodass [mm]\vmat{ f(x)-g }<\varepsilon[/mm]
> ist, [mm]\forall[/mm] x für die [mm]\vmat{ x-x_{0} }<\delta[/mm] gilt.



Das bedeutet anschaulich: Wenn du "ganz nah" an [mm] x_0 [/mm] herangehst, geht der Wert von f(x) "ganz nah" an den Wert g. Oder noch genauer: Wenn du eine Vorgabe [mm] \epsilon [/mm] machst, wie nah f(x) an g gehen soll, findest du immer ein offenes Intervall um  [mm] x_0, [/mm] für das alle Funktionswerte näher als [mm] \epsilon [/mm] an g liegen.

Einfaches Beispiel: [mm] f(x)=x^2, x_0 [/mm] =0, g=0

Wir machen die Vorgabe: |f(x)-g| < [mm] \epsilon. [/mm]
Das entspricht in unserem Beispiel [mm] |x^2-0|<\epsilon \gdw x^2<\epsilon. [/mm]

Wir wählen nun [mm] \delta=min(\epsilon|0,5). [/mm] Dann gilt:

Wenn [mm] |x-x_0|<\delta [/mm] ist, ist hier [mm] |x-0|<\epsilon [/mm] und |x-0|<0,5, also [mm] |x|<\epsilon [/mm] und |x|<0,5. Dann wird nun "automatisch"

[mm] x^2=|x|^2<\epsilon^2 [/mm] und [mm] x^2<0,25. [/mm]

Falls nun [mm] \epsilon<0,7 [/mm] ist, ist [mm] \epsilon^2<0,7*\epsilon<\epsilon [/mm] und damit [mm] x^2<\epsilon [/mm] wie gewünscht.
Falls [mm] \epsilon>0,6 [/mm] ist, ist wegen [mm] x^2<0,25 [/mm]  auch [mm] x^2<\epsilon [/mm] wie gewünscht.

Damit ist 0 der Grenzwert.

Gegenbeispiel: [mm] f(x)=\bruch{|x|}{x}, x_0=0 [/mm]

Wir betrachten die Funktion zunächst nur für x>0. Dann gilt: [mm] f(x)=\bruch{|x|}{x}=f(x)=\bruch{x}{x}=1. [/mm]
Annahme: Es gibt ein g, wie für die Stetigkeit gefordert. Dann muss gelten: [mm] |f(x)-g|=|1-g|<\epsilon [/mm] (auch) für beliebig kleines positives [mm] \epsilon [/mm] und passende x-Werte. Da man [mm] \epsilon [/mm] beliebig klein machen kann, kommt für g nur der Wert 1 in Frage. Dann ist sogar [mm] |1-g|=0<\epsilon [/mm] immer richtig, und man kann beliebige x wählen, also [mm] \delta [/mm] beliebig.
Nun betrachten wir die Funktion für x<0. Dann gilt: [mm] f(x)=\bruch{|x|}{x}=f(x)=\bruch{-x}{x}=-1. [/mm]
Da wir g schon kennen, muss nun gelten: [mm] |f(x)-g|=|-1-1|=2<\epsilon [/mm] für beliebig kleines positives [mm] \epsilon [/mm] und passende x-Werte. Für [mm] \epsilon=1 [/mm] ist die Ungleichung aber nie richtig, egal wie wir die negativen x-Werte und damit [mm] \delta [/mm] wählen. Die Funktion ist für [mm] x_0=0 [/mm] unstetig.

Wenn [mm] x_0\ne [/mm] 0 ist, ist die Funktion übrigens stetig: Für [mm] x_0=a [/mm] (positiv oder negativ) wählen wir ein Intervall [mm] |x-x_0|<\delta=|a|/2. [/mm] Dann haben x und [mm] x_0 [/mm] immer das selbe Vorzeichen, [mm] f(x)=f(x_0), [/mm] und |f(x)-g| ist immer 0.




>  
> Besitzt eine nicht stetige Funktion einen Grenzwert?

Eine Funktion heißt stetig, wenn sie ÜBERALL stetig ist. Wenn eine Funktion also an mindestens einer Stelle keinen Grenzwert besitzt, heißt sie unstetig. Sie kann aber an allen oder vielen anderen Stellen stetig sein. Es gibt allerdings auch Funktionen, die nirgends stetig sind, z.B.

[mm] f(x)=\left\{\begin{matrix} 1,& \mbox{wenn }x\mbox{ rational} \\0, & \mbox{wenn }x\mbox{ irrational} \end{matrix}\right. [/mm]

>  
> Vielen Dank im Voraus!
>  
> Der Pinguinagent


Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:56 Sa 27.05.2017
Autor: tobit09

Hallo zusammen!


> Gegenbeispiel: [mm]f(x)=\bruch{|x|}{x}, x_0=0[/mm]

Hier sollte noch festgelegt werden, wie $f(0)$ definiert sein soll, da die Funktion $f$ im Folgenden an der Stelle [mm] $x_0=0$ [/mm] auf Stetigkeit untersucht werden soll.


> Wenn [mm]x_0\ne[/mm] 0 ist, ist die Funktion übrigens stetig: Für
> [mm]x_0=a[/mm] (positiv oder negativ) wählen wir ein Intervall
> [mm]|x-x_0|<\delta=|a|/2.[/mm] Dann haben x und [mm]x_0[/mm] immer das selbe
> Vorzeichen, [mm]f(x)=f(x_0),[/mm] und |f(x)-g| ist immer 0.

Hier ist [mm] $g:=f(x_0)$ [/mm] gemeint.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]