Gradient senkrecht auf Fläche < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:56 Mi 12.12.2012 | Autor: | s1mn |
Aufgabe | Gegeben sei eine implizite Fläche [mm] \IF [/mm] = [mm] \{(x,y,z)^{T} \in \IR{3} | F(x,y,z) = 0\} [/mm] mit einer differenzierbaren Funktion F: [mm] \IR^{3} \to \IR. [/mm] Zeigen Sie, dass der Gradientvektor (Nabla [mm] F)^{T} [/mm] senkrecht auf dieser Fläche steht. Genauer: Wann immer eine glatte Kurve [mm] \gamma(t) [/mm] auf [mm] \IF [/mm] verläuft, so steht (Nabla [mm] F)^{T} [/mm] senkrecht auf dem Tangentialvektor [mm] \gamma'(t).
[/mm]
Verifizieren Sie dies anschließend an einem Punkt auf der Kugeloberfläche F(x,y,z) = [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + [mm] z^{2} [/mm] - [mm] R^{2} [/mm] (für ein R > 0) und auf der ebenen Fläche F(x,y,z) = x+y-*z. |
Hey Leute,
und wieder klappts nicht...
Ich weiss nicht genau wie ich mit [mm] \gamma(t) [/mm] ansetzen soll...
Gibts da irgend nen Tipp wie man [mm] \gamma(t) [/mm] wählen sollte ?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:05 Mi 12.12.2012 | Autor: | leduart |
Hallo
setz [mm] \ein [/mm] beliebiges [mm] \gamma(t) [/mm] in F ein und bilde dF/dt
Gruss leduart
|
|
|
|