www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Grad Körpererweiterung
Grad Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grad Körpererweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 So 15.12.2013
Autor: Belleci

Aufgabe
Sei z [mm] \in \mathbb{C} \setminus \mathbb{R} [/mm] algebraisch vom Grad n über [mm] \mathbb{Q}. [/mm] Zeige:
a) [mm] [\mathbb{Q}[z, \overline{z}]:[\mathbb{Q}[z+ \overline{z}]] \ge [/mm] 2.
b) Re(z) ist albegraisch vom Grad [mm] \le [/mm] n(n-1)/2 über [mm] \mathbb{Q}. [/mm]

Hallo,

ich weiß bei der Aufgabe gerade insgesamt nicht so wirklich, wie ich die lösen kann, ich komme auf keinen Ansatz.
Kann mir da bitte wer helfen?

Danke

        
Bezug
Grad Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 So 15.12.2013
Autor: felixf

Moin!

> Sei z [mm]\in \mathbb{C} \setminus \mathbb{R}[/mm] algebraisch vom
> Grad n über [mm]\mathbb{Q}.[/mm] Zeige:
>  a) [mm][\mathbb{Q}[z, \overline{z}]:[\mathbb{Q}[z+ \overline{z}]] \ge[/mm]
> 2.

Der Grad einer Koerpererweiterung ist eine ganze Zahl [mm] $\ge [/mm] 1$. Wenn du also zeigen sollst, dass der Grad [mm] $\ge [/mm] 2$ ist, musst du nur zeigen dass er nicht 1 sein kann. Was bedeutet es, wenn er 1 ist?

>  b) Re(z) ist albegraisch vom Grad [mm]\le[/mm] n(n-1)/2 über
> [mm]\mathbb{Q}.[/mm]

Kannst du $Re(z)$ durch $z$ und [mm] $\overline{z}$ [/mm] ausdruecken?

Wenn ja, schau dir mehrere passende Koerpererweiterungen an und schaetze jeweils die Grade zwischen ihnen ab, um schliesslich eine Abschaetzung der Art [mm] $[\IQ(Re(z)) [/mm] : [mm] \IQ] \le [/mm] ...$ zu bekommen.

LG Felix


Bezug
                
Bezug
Grad Körpererweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Mo 16.12.2013
Autor: Belleci

Hallo Felix,

danke für deine Antwort.


> Der Grad einer Koerpererweiterung ist eine ganze Zahl [mm]\ge 1[/mm].
> Wenn du also zeigen sollst, dass der Grad [mm]\ge 2[/mm] ist, musst
> du nur zeigen dass er nicht 1 sein kann.

Ja klar, an sowas offensichtliches denke ich natürlich nicht. *Kopf auf den Tisch knall*

> Was bedeutet es,
> wenn er 1 ist?

Der Grad kann nur 1 sein bei der Identität.

>  
> >  b) Re(z) ist albegraisch vom Grad [mm]\le[/mm] n(n-1)/2 über

> > [mm]\mathbb{Q}.[/mm]
>  
> Kannst du [mm]Re(z)[/mm] durch [mm]z[/mm] und [mm]\overline{z}[/mm] ausdruecken?
>  
> Wenn ja, schau dir mehrere passende Koerpererweiterungen an
> und schaetze jeweils die Grade zwischen ihnen ab, um
> schliesslich eine Abschaetzung der Art [mm][\IQ(Re(z)) : \IQ] \le ...[/mm]
> zu bekommen.
>  


Habe jetzt beide Teile gelöst,
vielen Dank nochmal. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]