www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Gleichung mit Beträgen
Gleichung mit Beträgen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung mit Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 So 01.11.2009
Autor: f1ne

keine chance, ich kapiers einfach nicht...

Also, mal ganz langsam:

Als erstes rechne ich für  |x-3| aus das x=3 ist, hab somit meine 1. Grenze und für |x+1| ist x=-1 und hab die 2.

Dann stell ich 3 Fälle auf:

1. Fall x [mm] \le [/mm] -1
2. Fall -1 < x [mm] \le [/mm] 3
3. x [mm] \ge [/mm] 3

so weit so gut.

Jetzt les ich mir das Skript durch und finde als nächstes raus das meine y Werte für den 1. Fall ( negativ ) den 2. Fall ( negativ ) und den 3. Fall positiv sind. Wenn ich für x etwas einsetze.

Das heisst also das ich die Terme aus Fall 1 mit -1 multipliziere und erhalte so also für

Fall1: -(x-3) = - (x+1)
Fall2: -(x-3) = - (x+1) -> Unterscheidet sich von deiner Lösung
Fall3: x-3=x+1

Und als nächstes müsste ich dann diese Gleichungen jeweils ausrechnen, richtig ?

Und dann kommt schon das Problem das mich aufhält denn wenn ich
-(x-3)=-x(+1) ausrechne, also
-x+3=-x-1 / beide seiten +1
-x+4=-x / beide seiten +x
steht da nur noch 4=0 und das ist ne falsche aussage.

Ich geh davon aus das ich einen fatalen Fehler bei dieser Rechnung mache, der absolut nicht geht. Aber ich bin momentan zu blöd es zu sehen wenn ich ehrlich bin.


        
Bezug
Gleichung mit Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 So 01.11.2009
Autor: M.Rex

Hallo

Schau dir mal die Definition vom MBBetrag einer reellenZahl an.

Hier musst du die beiden "kritischen" Stellen finden, an denen einer der Beträge Null wird, also 3 und -1

Also betrachte mal die drei Intervalle.

1: x<-1
Dann
|x-3|=|x+1|
[mm] \gdw \red{-(}x-3\red{)}=\red{-(}x+1\red{)} [/mm]

2: -1 [mm] \ge [/mm] x<3
|x-3|=|x+1|
[mm] \gdw \red{-(}x-3\red{)}=\green{+(}x+1\green{)} [/mm]

Fall 3.
x [mm] \ge [/mm] 3
|x-3|=|x+1|
[mm] \gdw \green{+(}x-3\green{)}=\green{+(}x+1\green{)} [/mm]

Die drei Gleichungen kannst du jetzt ja ohne Probleme lösen, und die "Teillösungen" der einzelnen Intervalle zur Gesamtlösung vereinigen.

Marius


Bezug
                
Bezug
Gleichung mit Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 So 01.11.2009
Autor: f1ne

Warum ist denn Fall 2 nicht -1 < x [mm] \le [/mm] 3 ?

Bezug
                        
Bezug
Gleichung mit Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 So 01.11.2009
Autor: M.Rex

Hallo

> Warum ist denn Fall 2 nicht -1 < x [mm]\le[/mm] 3 ?

Sorry, Tippfehler.

Marius


Bezug
                                
Bezug
Gleichung mit Beträgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 So 01.11.2009
Autor: f1ne

bearbeite antwort neu
Bezug
        
Bezug
Gleichung mit Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 So 01.11.2009
Autor: f1ne

Könnte es sein das ich bei Fall 1 das so machen muss? Erscheint mir aber auch irgendwie seltsam....

-(x-3)=-(x+1)

-x+3=-x-1 / :(-x-1)

[mm] \bruch{(-x+3)}{(-x-1)}=1 [/mm] / -1

[mm] \bruch{(-x+3)}{(-x-1)}-1=0 [/mm] / * (-x-1)

[(-x+3)*(-x-1)]-1=0

(x²+x-3x-3)-1=0

x²+2x-4 = 0

dann pq Formel

[mm] -\bruch{2}{2} [/mm] +- [mm] \wurzel \bruch{2}{2}+4 [/mm]

?

keine ahnung wie die 4 unter den wurzelstrich geht :/

Aber wenn ich das rechne bekomme ich krumme ergebnisse raus, glaub auch nicht dass das richtig ist... Ich bin nen richtiges Matheass stell ich gerade fest....

Bezug
                
Bezug
Gleichung mit Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 So 01.11.2009
Autor: M.Rex

Hallo

Warum so kompliziert?


1: x<-1
Dann
|x-3|=|x+1|
[mm] \gdw \red{-(}x-3\red{)}=\red{-(}x+1\red{)} [/mm]
[mm] \gdw [/mm] -x+3=-x-1
[mm] \gdw [/mm] 3=1 (Falsche Aussage)
also hat Fall 1 keine Lösung

Fall 2:

2: -1 $ [mm] \le [/mm] $ x<3
|x-3|=|x+1|
$ [mm] \gdw \red{-(}x-3\red{)}=\green{+(}x+1\green{)} [/mm] $
[mm] \gdw [/mm] -x+3=x+1
[mm] \gdw [/mm] 2x=2
[mm] \gdw [/mm] x=1
Und da 1 im betrachteten Intervall liegt, ist x=1 eine gültige Lösung

Fall 3 betrachte mal selber

Marius

Bezug
                        
Bezug
Gleichung mit Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 01.11.2009
Autor: f1ne

1: x>3
Dann
| x - 3 |= | x + 1 |
+ ( x - 3 ) = + ( x + 1 )
-3=1 ( Falsche Aussage )
also hätte Fall 3 auch keine Lösung oder ?

Und dann wäre mein Endresumee welches ? Ich hab den Sinn des ganzen trotz dutzenden von Videos im Internet immer noch nicht verstanden.

Bezug
                                
Bezug
Gleichung mit Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 So 01.11.2009
Autor: abakus


> 1: x>3
>  Dann
>  | x - 3 |= | x + 1 |
>  + ( x - 3 ) = + ( x + 1 )
>  -3=1 ( Falsche Aussage )
>  also hätte Fall 3 auch keine Lösung oder ?
>  
> Und dann wäre mein Endresumee welches ? Ich hab den Sinn
> des ganzen trotz dutzenden von Videos im Internet immer
> noch nicht verstanden.

Siehe Abbildung:
[Dateianhang nicht öffentlich]
Rot ist y=|x+1| dargestellt, was sich entweder als y=x+1 oder als y=-x-1 darstellen lässt.
Grün ist y=|x-3| dargestellt.
Für x<-1 gelten die Darstellungen y=-x-1 bzw. y=-x+3 (kein Schnittpunkt).
Für x>3 gelten die Darstellungen y=x+1 bzw. y=x-3 (kein Schnittpunkt).
Die Gleichheit beider Beträge gilt nur an einer Stelle zwischen -1 und 3 (da, wo die dort für die Beträge geltenden Terme -x+3 und x+1 den gleichen Wert haben ).
Gruß Abakus

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                        
Bezug
Gleichung mit Beträgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 So 01.11.2009
Autor: f1ne

Sehr gut, habs verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]