www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Gleichung 3.ten Grades
Gleichung 3.ten Grades < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung 3.ten Grades: Frage
Status: (Frage) beantwortet Status 
Datum: 22:01 Fr 17.06.2005
Autor: marrrtina

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.uni-protokolle.de/foren/viewt/28075,0.html.]
Hallo,
Ich hab da ein Problem:
Kann mir jemand erklären, wie ich diese Gleichung nach x auflöse:
x³+3/2x²+3/2=-1/2x³-3/2x?
Also ich stehe da: x³+3x²-3x+3=0 und jetzt?
es soll -1 dabeirauskommen, aber ich versteh es einfach nicht...
gruß
m.

        
Bezug
Gleichung 3.ten Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Fr 17.06.2005
Autor: Karl_Pech

Hallo marrtina,


>  Kann mir jemand erklären, wie ich diese Gleichung nach x
> auflöse:
>  [mm] $x^3 [/mm] + [mm] \bruch{3}{2}x^2 [/mm] + [mm] \bruch{3}{2} [/mm] = [mm] -\bruch{1}{2}x^3 [/mm] - [mm] \bruch{3}{2}x$? [/mm]
>  Also ich stehe da: x³+3x²-3x+3=0 und jetzt?


Du hast einen Umformungsfehler gemacht:


[m]x^3 + \frac{3}{2}x^2 + \frac{3}{2} = - \frac{1}{2}x^3 - \frac{3}{2}x \Leftrightarrow \frac{2}{3}x^3 + x^2 + 1 = - \frac{1}{3}x^3 - x \Leftrightarrow x^3 + x^2 + x + 1 = 0[/m]


>  es soll -1 dabeirauskommen, aber ich versteh es einfach
> nicht...


Die Exponenten des Polynoms wechseln sich von gerade zu ungerade ab: [mm] $f\left(x\right) [/mm] = [mm] x^{\green{0}} [/mm] + [mm] x^{\red{1}} [/mm] + [mm] x^{\green{2}} [/mm] + [mm] x^{\red{3}}$. [/mm] Wir sehen, daß wir genauso viele gerade wie ungerade Summanden bekommen. Und was wissen wir über das Verhalten von [mm] $\left(-1\right)^{\text{natürlicher Exponent inklusive }0}$? [/mm] Es gilt:


[mm] $\left(-1\right)^0 [/mm] := 1$
[mm] $\left(-1\right)^1 [/mm] = -1$
[mm] $\left(-1\right)^2 [/mm] = 1$
[mm] $\left(-1\right)^3 [/mm] = -1$
[mm] $\vdots$ [/mm]


Wenn wir also -1 in das obere Polynom einsetzen, müssen wir 0 erhalten, da wir genau soviele gerade wie ungerade Summanden haben, die sich dann gegenseitig aufheben. Dieses Prinzip können wir verallgemeinern:


[m]\begin{gathered} \sum\limits_{i = 0}^{2n + 1} {x^i } = \left( {x^0 + x^1 } \right) + \left( {x^2 + x^3 } \right) + \cdots + \left( {x^{2n} + x^{2n + 1} } \right) \hfill \\ = \left( {x^0 + x^2 + \cdots + x^{2n} } \right) + \left( {x^1 + x^3 + \cdots + x^{2n + 1} } \right) = \left( {\sum\limits_{i = 0}^n {x^{2i} } } \right) + \left( {\sum\limits_{i = 0}^n {x^{2i + 1} } } \right) \hfill \\ \end{gathered}[/m]


Was passiert wenn wir -1 einsetzen? :


[m]\left( {\sum\limits_{i = 0}^n {\left( { - 1} \right)^{2i} } } \right) + \left( {\sum\limits_{i = 0}^n {\left( { - 1} \right)^{2i + 1} } } \right) = 1 + \left( {\sum\limits_{i = 0}^n {\left( { - 1} \right)\left( { - 1} \right)^{2i} } } \right) = 1 - \left( {\sum\limits_{i = 0}^n {\left( { - 1} \right)^{2i} } } \right) = 1 - 1 = 0[/m]


Merke es dir doch so:


Polynom-Summe von gerade nach ungerade mit 1er Koeffizienten:

[mm] $\Rightarrow$ [/mm] Nullstelle -1


Polynom-Summe von ungerade nach gerade mit 1er Koeffizienten:

[mm] $\Rightarrow$ [/mm] Nullstelle -1


Polynom-Summe von (un)gerade nach (un)gerade:

[mm] $\Rightarrow$ [/mm] Obiges Prinzip nicht anwendbar, da es zu genau einem (un)geraden Potenz-Summanden keinen entsprechenden (un)geraden Potenz-Summanden gibt.



Viele Grüße
Karl



Bezug
        
Bezug
Gleichung 3.ten Grades: weitere (mögliche) Lösungen
Status: (Antwort) fertig Status 
Datum: 23:32 Fr 17.06.2005
Autor: Loddar

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo marrrtina,

[willkommenmr] !!


Deinen Rechenfehler bei der Umformung hat Dir ja bereits Karl aufgezeigt.

Aus der Form $x^3+x^2+x+1 \ = \ 0$ mußt du nun mit (gezieltem) Raten oder Probieren eine der Nullstellen herausfinden.

Bei einer möglichen ganzzahligen Lösung bieten sich dafür die Teiler des Absolutgliedes (hier "$+ \ 1$") an. Also: $\pm 1$.

Dies klappt ja nun mit $x_1 \ = \ -1$.


Um nun diese Gleichung auf weitere mögliche Lösungen zu untersuchen, solltest Du eine MBPolynomdivision durchführen durch die ermittelte Lösung: $\left(x - x_1) \ = \ \left[x - (-1)\right] \ = \ \left(x+1)$

Also:   $\left(x^3 + x^2 + x + 1\right) : (x+1) \ = \ ...$

Daraus ergibt sich dann ein quadratischer Term, der "vielleicht" ;-) weitere Lösungen beinhaltet.


Gruß
Loddar


Bezug
                
Bezug
Gleichung 3.ten Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 Sa 18.06.2005
Autor: marrrtina

vielen dank für eure Hilfe... jetzt weiss ich wie ich weiter komme
gruß m.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]