www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Gleichsetzen zur NSTberechnung
Gleichsetzen zur NSTberechnung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichsetzen zur NSTberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Sa 30.10.2010
Autor: xx2

Aufgabe
Zeigen Sie, dass die Graphen der Funktionen f mit [mm] {f(x)}=x^{4}-4,25x^{2}+1 [/mm] und g mit g(x)=2,25x den Punkt S (-1|-2,25) gemeinsam haben.

Hallo an alle!
Ich habe ein wenig Probleme mit dieser Aufgabe.
Mein Lösungsansatz:

f(xs)=g(xs)
[mm] x^{4}-4,25x^{2}+1=2,25x [/mm] |-2,25x |-1
[mm] x^{4}-4,25x^{2}-2,25x=-1 [/mm]

Und hier stehe ich total auf dem Schlauch.. Wäre nett, wenn mir jemand einen Tipp geben könnte!

        
Bezug
Gleichsetzen zur NSTberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Sa 30.10.2010
Autor: M.Rex

Hallo.

Um zu zeigen, dass der Punkt auf beidne graphen liegt, reicht es, zu zeigen, dass g(-1)=-2,25 und f(-1)=-2,25

Um weitere Schnittstellen zu ermitteln, hast du den Weg korrekt angefangen.

$ [mm] x^{4}-4,25x^{2}-2,25x=-1 [/mm] $

Jetzt pach ie -1 noch auf die linke Seite, so dass du

$ [mm] x^{4}-4,25x^{2}-2,25x+1=0 [/mm] $ dort stehen hast.

Jetzt forme die linke Seite mal mit einer Polynomdivision mit (x+1) um, du hast ja schon gezeigt, dass -1 eine Schnittstelle ist.

Marius


Bezug
                
Bezug
Gleichsetzen zur NSTberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Sa 30.10.2010
Autor: xx2

Aber woher weiß ich denn, das -1 eine Schnittstelle ist.. Nur aus der Aufgabenstellung heraus?

Bezug
                        
Bezug
Gleichsetzen zur NSTberechnung: oder probieren
Status: (Antwort) fertig Status 
Datum: 17:19 Sa 30.10.2010
Autor: Loddar

Hallo xx2!



> Aber woher weiß ich denn, das -1 eine Schnittstelle ist..
> Nur aus der Aufgabenstellung heraus?

[ok] Genau.

Anderenfalls hättest Du etwas probieren und Werte einsetzen müssen.


Gruß
Loddar



Bezug
                                
Bezug
Gleichsetzen zur NSTberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 Sa 30.10.2010
Autor: xx2

Okay, danke!
Aber kann ich mit meiner Gleichsetzung denn noch was anfangen?
Weil ich nicht weiß, wie mir hier die Polynomdivision weiterhelfen könnte.

Bezug
                                        
Bezug
Gleichsetzen zur NSTberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Sa 30.10.2010
Autor: Steffi21

Hallo, aus der Aufgabenstellung ist der Schnittpunkt (-1; -2,25) bekannt, weitere Schnittstellen bekommst du durch Gleichsetzen

[mm] x^{4}-4,25x^{2}+1=2,25x [/mm]

[mm] x^{4}-4,25x^{2}-2,25x+1=0 [/mm]

du kennst bereits eine Schnittstelle x=-1

[mm] (x^{4}-4,25x^{2}-2,25x+1):(x+1)=x^{3}-x^{2}-3,25x+1 [/mm]

die Aufgabe ist doch aber bereits gelöst, der Nachweis (-1; -2,25) gehört zu beiden Funktionen ist doch erbracht, weitere Schnittstellen sind nicht gefragt, setze -1 in beide Funktionen ein

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]