Gleichmäßige Stetigkeit < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!!
Ich brauche dringend Hilfe!! Ich hab nämlich ziemliche Probleme mit der gleichmäßigen Stetigkeit!! Die Aufgabe die mir Kopfzerbrechen bescherrt ist folgende:
Ich soll herausfinden, ob die Funktion f in folgenden Defintionsgebieten gleichmäßig stetig ist:
f(x)= [mm] \bruch{1}{x²} [/mm] mit [mm] D_{f}=(0,1) [/mm] , [mm] D_{f}=[ \bruch{1}{10},1] [/mm] , [mm] D_{f}=(1, \infty)
[/mm]
Die Lösungen liegen mir zwar klar auf der hand, aber ich weiß nicht wie ich sie mathematisch korrekt formulieren muss.(Ergebnisse meiner Überlegungen: im ersten und dritten Definitionsgebiet ist f nicht gleichmäßig stetig, aber im zweiten)
Bitte helft mir!!!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:05 Do 13.01.2005 | Autor: | Marcel |
Hallo Mathefuchs,
!!
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo!!
> Ich brauche dringend Hilfe!! Ich hab nämlich ziemliche
> Probleme mit der gleichmäßigen Stetigkeit!! Die Aufgabe die
> mir Kopfzerbrechen bescherrt ist folgende:
>
> Ich soll herausfinden, ob die Funktion f in folgenden
> Defintionsgebieten gleichmäßig stetig ist:
>
> f(x)= [mm]\bruch{1}{x²}[/mm] mit [mm]D_{f}=(0,1)[/mm] , [mm]D_{f}=[ \bruch{1}{10},1][/mm]
> , [mm]D_{f}=(1, \infty)
[/mm]
>
> Die Lösungen liegen mir zwar klar auf der hand, aber ich
> weiß nicht wie ich sie mathematisch korrekt formulieren
> muss.(Ergebnisse meiner Überlegungen: im ersten und dritten
> Definitionsgebiet ist f nicht gleichmäßig stetig, aber im
> zweiten)
Tja, leider hast du aber einen Fehler:
Im 3en Falle [mm] ($D_f=(1,\infty)$) [/mm] ist die Funktion auch glm. stetig. Warum, das kannst du dir zusammenbauen, wenn du dir dies ([m]\leftarrow[/m] click it) genau durchliest (dort wird zwar die Funktion [m]f(x)=\frac{1}{x}[/m] betrachtet, aber versuche mal, das analog auf deine Funktion zu übertragen!)
Der zweite Fall [mm] ($D_f=\left[\frac{1}{10},1\right]$) [/mm] ist klar:
Stetige Funktionen zwischen metrischen Räumen sind auf kompakten Mengen glm. stetig (Satz der Analysis).
Warum die Funktion auf [mm] $D_f=(0,1)$ [/mm] nicht glm. stetig ist, kannst du wiederum hier ([m]\leftarrow[/m] click it) nachlesen.
Viele Grüße,
Marcel
|
|
|
|