www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Gleichmäßige Stetigkeit
Gleichmäßige Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Do 19.01.2006
Autor: Micchecker

Hi!

Ich muss folgende Funktionen auf gleichmäßige Stetigkeit hin untersuchen:

h: IR \ {0} ---> IR
x ---> [mm] 1/(x^2) [/mm]

g: IR ---> IR
x ---> |x|

f: IR ---> IR
x ---> [mm] x^7 [/mm]


Wie mache ich das am Besten?

Gruß

        
Bezug
Gleichmäßige Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Do 19.01.2006
Autor: Julius

Hallo!

Alle diese Aufgaben wurden vor wenigen Tagen/Stunden hier im Matheraum gelöst. Such mal ein bisschen...

Ansonsten sind eigene Ansätze vonnöten, und ich bitte dich beim nächsten Mal nicht so viele Aufgaben in den gleichen Strang zu stellen, sondern lieber alle einzeln. Dann bekommst du auch eher eine Antwort.

Liebe Grüße
Julius

Bezug
        
Bezug
Gleichmäßige Stetigkeit: Sorry + Bitte an Moderatoren
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 Do 19.01.2006
Autor: Julius

Hallo!

Ich sehe gerade, dass die Aufgaben, die gelöst wurden, doch ein wenig differierten (auch wenn sie doch sehr ähnlich sind). Daher wäre es nett, wenn ein Moderator den Status der Frage wieder auf "unbeantwortet" stellt. Danke! Meine Bitte bezüglich der Masse an Aufgaben und den eigenen Ansätzen gilt trotzdem für die Zukunft.

Liebe Grüße
Julius

Bezug
        
Bezug
Gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Do 19.01.2006
Autor: mathiash

Hallo Jonas,

am besten schreibst Du Dir die Definition von glm. Stetigkeit nochmal hin:

[mm] f\colon D\to \IR [/mm] glm. stetig auf D gdw es zu jedem [mm] \epsilon [/mm] >0 ein [mm] \delta> [/mm] 0 gibt, so dass
fuer alle   [mm] x,y\in [/mm] D    mit    [mm] |x-y|\leq \delta [/mm]      dann auch        [mm] |f(x)-f(y)|\leq\epsilon [/mm]       gilt.

Schauen wir uns exemplarisch die erste Fkt   [mm] x\mapsto \frac{1}{x^2} [/mm] auf [mm] D=\IR\setminus\{0\} [/mm]
an: Angenommen, sie waere glm. stetig. Setzen wir [mm] y=x+\delta [/mm] und schauen wir, was
bei [mm] x\to [/mm] 0 geschieht:

[mm] |f(x)-f(x+\delta)| [/mm] = [mm] \left | \frac{(x+\delta)^2-x^2}{x^2\cdot (x+\delta)^2} \right [/mm] |

= [mm] \left | \frac{2x\cdot \delta -\delta^2}{x^2(x+\delta)^2}\right [/mm] |

= [mm] \left | \frac{\delta (2-\delta)}{x\cdot (x+\delta)^2}\right [/mm] | und das divergiert offenbar fuer
jedes [mm] \delta [/mm] > 0  bei [mm] x\to [/mm] 0 gegen [mm] \infty. [/mm]

Kann also dann die Funktion glm. stetig sein ?

Viele Gruesse,

Mathias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]