www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Gleichmächtigkeit von Relation
Gleichmächtigkeit von Relation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmächtigkeit von Relation: Idee
Status: (Frage) beantwortet Status 
Datum: 14:38 So 10.01.2010
Autor: carlosfritz

Aufgabe
Beweise: Für je zwei [mm] x,y\in [/mm] G sind [mm] [x]_{\sim} [y]_{\sim} [/mm] gleichmächtig.
Sei $ [mm] \sim=\{(x,y):x,y \in G, x\circ y^{-1} \in H \} [/mm] $. Sei [mm] (G;\circ [/mm] ) Gruppe und [mm] H\subseteq [/mm] G

Hallo,
ich bräuchte hier mal eine Idee. Ich komme einfach nicht drauf. Mir schwebt der Homomorphiesatz für Mengen im Kopf rum. Ist das der richtige Weg?
Falls ja, würde mir ein einfaches Jahr als Antwort ersteinmal langen. Dann müsste ich mich da durch beißen. Falls nicht, habe ich echt keine Ahnung.

Ob es was bringt, dass [mm] [1_{G}]_{\sim} [/mm] = G ist? (stimmt doch oder?)

Ich danke schonmal!

        
Bezug
Gleichmächtigkeit von Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 So 10.01.2010
Autor: felixf

Hallo!

> Beweise: Für je zwei [mm]x,y\in[/mm] G sind [mm][x]_{\sim} [y]_{\sim}[/mm]
> gleichmächtig.
>  Sei [mm]\sim=\{(x,y):x,y \in G, x\circ y^{-1} \in H \} [/mm]. Sei
> [mm](G;\circ[/mm] ) Gruppe und [mm]H\subseteq[/mm] G
>  
>  ich bräuchte hier mal eine Idee. Ich komme einfach nicht
> drauf. Mir schwebt der Homomorphiesatz für Mengen im Kopf
> rum. Ist das der richtige Weg?

Nein.

> Falls ja, würde mir ein einfaches Jahr als Antwort
> ersteinmal langen. Dann müsste ich mich da durch beißen.
> Falls nicht, habe ich echt keine Ahnung.
>  
> Ob es was bringt, dass [mm][1_{G}]_{\sim}[/mm] = G ist? (stimmt doch
> oder?)

Das stimmt nicht: [mm] $[1_G]_\sim [/mm] = H$. Wenn [mm] $[1_G]_\sim [/mm] = G$ waere, dann wuerde es genau eine Aequivalenzklasse geben, womit die Aussage trivial waer.

Schau doch mal fuer festes $x [mm] \in [/mm] G$ die Abbildung $H [mm] \to [/mm] G$, $h [mm] \mapsto [/mm] h x$ an. Ist diese Injektiv? Kann das Bild zufaellig [mm] $[x]_\sim$ [/mm] sein?

LG Felix


Bezug
                
Bezug
Gleichmächtigkeit von Relation: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 So 10.01.2010
Autor: carlosfritz

Alles klar. Habe alles verstanden :)
Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]