www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Gleichheit von Topologien 2
Gleichheit von Topologien 2 < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit von Topologien 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 25.10.2014
Autor: Peter_123

Aufgabe
Seien [mm] $(Y_{n},d_{n})$ [/mm] metrische Räume mit [mm] $d_{n}(x_{n},y_{n}) \le [/mm] 1$ , [mm] $x_{n},y_{n} \in Y_{n}$ [/mm] und sei [mm] T_{n} [/mm] die von [mm] d_{n} [/mm] induzierte Topologie auf [mm] Y_{n}. [/mm] Auf der Menge [mm] $Y:=\produkt_{n \in \mathbb{N}}Y_{n}$ [/mm] haben wir dann die Metrik d :
[mm] $d((x_{n},y_{n}) [/mm] := [mm] max_{n \in \mathbb{N}} \alpha_{n}d_{n}(x_{n},y_{n})$ [/mm] , wobei [mm] (\alpha_{n} [/mm] > 0 und [mm] \alpha_{n} \to [/mm] 0)
sowie die Topologie T die von der Metrik auf Y iduziert wird, aber auch die Produkttopologie [mm] \Lambda [/mm] der Topologien [mm] T_{n}. [/mm]
Zeige, dass T = [mm] \Lambda [/mm]



Hallo,

und noch eine topologische Aufgabe...

Nehmen wir uns eine beliebige offene Menge in T her, also

$O [mm] \in [/mm] T$
[mm] \gdw $\forall [/mm] x = [mm] (x_{n})_{n \in \mathbb{N}} \in [/mm] O$ [mm] \Rightarrow $\exists [/mm] a > 0 : x [mm] \in U_{a}(x) \subseteq [/mm] O$
[mm] \gdw $\forall [/mm] x [mm] \in [/mm] O $ [mm] \Rightarrow [/mm] $ [mm] \exists [/mm] a > 0 : x [mm] \in \produkt_{n=1}^{z} U_{a/\alpha_{n}}(x_{n}) \times \produkt_{n=z+1}^{\infty}x_{n} \subseteq [/mm] O$

was meint ihr bis hier ? ich bin mir gar nicht so sicher , ob man die zweite Äquivalenz einfach so hinschreiben kann.

- man kann das natürlich über [mm] U_{a}(x) [/mm] = [mm] \{y \in Y : d(x,y) < a\} [/mm] und umformen begründen.

aber mal weiter:

[mm] \gdw $\forall [/mm] x [mm] \in [/mm] O $ [mm] \Rightarrow [/mm] $ [mm] \exists [/mm] a > 0 : x [mm] \in \produkt_{n=1}^{z} U_{a/\alpha_{n}}(x_{n}) \times \produkt_{n=z+1}^{\infty}x_{n} \subseteq [/mm] O$
[mm] \gdw $\forall [/mm] x [mm] \in [/mm] O [mm] \exists O_{n} \in T_{n} [/mm] : x [mm] \in \produkt_{n=1}^{z}O_{n} \times \produkt_{z+1}^{\infty} x_{n} \subseteq [/mm] O$
also
[mm] $\forall [/mm] x [mm] \in [/mm] O [mm] \exists O_{n'} [/mm] : O = [mm] \bigcup_{x \in O} \produkt_{n=1}^{z}O_{n'} \times \produkt_{z+1}^{\infty} x_{n}$ [/mm]

also T = [mm] \Lambda [/mm]


Lg Peter

        
Bezug
Gleichheit von Topologien 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 So 26.10.2014
Autor: Peter_123

[mm] $U_{a}(x) [/mm] = [mm] \{ y \in Y : d(x,y) < a\} [/mm] $ = [mm] $\{y \in Y : max_{n \in \mathbb{N}} \alpha_{n}d_{n}(x_{n},y_{n}) < a\}$ [/mm]
da [mm] \alpha_{n} \to [/mm] 0
= [mm] \{y \in Y : \forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n} = [mm] \produkt_{n=1}^{z}U_{a/\alpha_{n}}(x_{n}) \times \produkt_{n=z+1}^{\infty}x_{n} [/mm]

- also das wäre die Begründung zu dem Teil oben : $ [mm] \exists [/mm] a > 0 : x [mm] \in \produkt_{n=1}^{z} U_{a/\alpha_{n}}(x_{n}) \times \produkt_{n=z+1}^{\infty}x_{n} \subseteq [/mm] O $

Danke für etwaige Vorschläge und Kritik.

Lg

Peter

Bezug
                
Bezug
Gleichheit von Topologien 2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 So 26.10.2014
Autor: tobit09


> [mm]U_{a}(x) = \{ y \in Y : d(x,y) < a\}[/mm] = [mm]\{y \in Y : max_{n \in \mathbb{N}} \alpha_{n}d_{n}(x_{n},y_{n}) < a\}[/mm]

Ja.


> da [mm]\alpha_{n} \to[/mm] 0
> = [mm]\{y \in Y : \forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n}

Was meinst du mit $z$?
Was bedeutet der senkrechte Strich $|$ ?


> = [mm]\produkt_{n=1}^{z}U_{a/\alpha_{n}}(x_{n}) \times \produkt_{n=z+1}^{\infty}x_{n}[/mm]

Was meinst du anstelle von [mm] $x_n$ [/mm] im hinteren Produkt in Wahrheit?


(Hast du eigentlich irgendwo die Voraussetzung [mm] $d_n(x_n,y_n)\le [/mm] 1$ für alle [mm] $n\in\IN$ [/mm] und alle [mm] $x_n,y_n\in Y_n$ [/mm] benutzt?)

Bezug
                        
Bezug
Gleichheit von Topologien 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 So 26.10.2014
Autor: Peter_123

Hallo und danke für deine Antwort,

z meint einfach eine Schranke - besser wäre eventuell [mm] n_{0} [/mm]

Ja hinten sollten eigentlich Elemente aus [mm] Y_{n} [/mm] stehen.

Nein diese Eigenschaften habe ich nirgends eingearbeitet.

LG

Peter

Bezug
                                
Bezug
Gleichheit von Topologien 2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 So 26.10.2014
Autor: tobit09

(Eigentlich bin ich schon zu müde zum Antworten. Ich hoffe, ich bringe trotzdem noch etwas Sinnvolles zustande... ;-) )


> z meint einfach eine Schranke - besser wäre eventuell
> [mm]n_{0}[/mm]

Eine andere Namensgebung ändert nichts an dem Problem:

Du behauptest

     [mm] $U_a(x)=\ldots=\{y \in Y : \forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n}
Meinst du damit, dass ein [mm] $z\in\IN$ [/mm] existiert, für das diese Gleichheit gilt?

Oder behauptest du

     [mm] $U_a(x)=\ldots=\{y \in Y :\exists z\in\IN\colon\forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n}

Oder noch anders?


> Ja hinten sollten eigentlich Elemente aus [mm]Y_{n}[/mm] stehen.

ELEMENTE aus [mm] $Y_n$? [/mm] Vermutlich [mm] $Y_n$ [/mm] selbst, oder?


> Nein diese Eigenschaften habe ich nirgends eingearbeitet.

Das deutet dann sehr darauf hin, dass deine Überlegungen nicht stimmen können.


Eine meiner Rückfragen hast du anscheinend übersehen:

Was meinst du mit dem senkrechten Strich $|$ ?

Bezug
                                        
Bezug
Gleichheit von Topologien 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:42 Mo 27.10.2014
Autor: Peter_123


> (Eigentlich bin ich schon zu müde zum Antworten. Ich
> hoffe, ich bringe trotzdem noch etwas Sinnvolles
> zustande... ;-) )
>  
>
> > z meint einfach eine Schranke - besser wäre eventuell
> > [mm]n_{0}[/mm]
>  Eine andere Namensgebung ändert nichts an dem Problem:
>  
> Du behauptest
>  
> [mm]U_a(x)=\ldots=\{y \in Y : \forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n}
>  
> Meinst du damit, dass ein [mm]z\in\IN[/mm] existiert, für das diese
> Gleichheit gilt?

genau - der senkrechte Strich meint übrigens ein : für das gilt - also:
[mm]U_a(x)=\ldots=\{y \in Y : \forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n}
der Teil nach dem logischen und : für alle n > z , [mm] alpha_{n} [/mm] < a gilt...
>  
> Oder behauptest du
>  
> [mm]U_a(x)=\ldots=\{y \in Y :\exists z\in\IN\colon\forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n}

>  
> Oder noch anders?
>  
>
> > Ja hinten sollten eigentlich Elemente aus [mm]Y_{n}[/mm] stehen.
>  ELEMENTE aus [mm]Y_n[/mm]? Vermutlich [mm]Y_n[/mm] selbst, oder?

[mm] Y_{n} [/mm] selbst - die Menge wird m.E. ja genau durch das kartesische Produkt beschrieben.

>  
>
> > Nein diese Eigenschaften habe ich nirgends eingearbeitet.
>  Das deutet dann sehr darauf hin, dass deine Überlegungen
> nicht stimmen können.

Wo bräuchte ich die denn? also ich benötige nur, dass die [mm] \alpha_{n} [/mm] gegen 0 gehen.

>  
>
> Eine meiner Rückfragen hast du anscheinend übersehen:

Vielen Dank für deine Bemühungen.

Lg Peter

>  
> Was meinst du mit dem senkrechten Strich [mm]|[/mm] ?

Bezug
                                                
Bezug
Gleichheit von Topologien 2: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Mo 27.10.2014
Autor: tobit09


> > Du behauptest
>  >  
> > [mm]U_a(x)=\ldots=\{y \in Y : \forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n}
>  
> >  

> > Meinst du damit, dass ein [mm]z\in\IN[/mm] existiert, für das diese
> > Gleichheit gilt?
>  genau

Dann würdest du es dem Leser leichter machen, wenn du verrietest, wie man ein solches [mm] $z\in\IN$ [/mm] erhält... ;-)


> - der senkrechte Strich meint übrigens ein : für
> das gilt - also:
>  [mm]U_a(x)=\ldots=\{y \in Y : \forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z : \alpha_{n}

>  
> der Teil nach dem logischen und : für alle n > z ,
> [mm]alpha_{n}[/mm] < a gilt...

Dann schreibe z.B.

     [mm] $U_a(x)=\ldots=\{y \in Y : \forall n \le z : \alpha_{n}d_{n}(x_{n},y_{n}) < a \wedge \forall n > z\text{ mit }\alpha_{n}


Ich komme übrigens auf die deutlich einfachere Darstellung

     [mm] $U_a(x)=\ldots=\{y \in Y : \forall n\in\IN\colon \alpha_{n}d_{n}(x_{n},y_{n}) < a\}$. [/mm]



> > > Nein diese Eigenschaften habe ich nirgends eingearbeitet.
>  >  Das deutet dann sehr darauf hin, dass deine
> Überlegungen
> > nicht stimmen können.
>  Wo bräuchte ich die denn? also ich benötige nur, dass
> die [mm]\alpha_{n}[/mm] gegen 0 gehen.

Dann können deine Überlegungen an mindestens einer Stelle nicht stimmen.

Die Aussage aus der Aufgabenstellung wird ohne die Voraussetzung [mm] $d_n(x_n,y_n)\le [/mm] 1$ für alle [mm] $n\in\IN$ [/mm] und alle [mm] $x_n,y_n\in Y_n$ [/mm] im Allgemeinen falsch:

Betrachte z.B.

     [mm] $Y_n:=\IR$, $d_n:=\text{die gewöhnliche Metrik auf }\IR$, $\alpha_n:=\frac{1}{n}$. [/mm]

Dann erfüllt die Menge

     [mm] $U:=U_1((0)_{n\in\IN})=\{(x_n)_{n\in\IN}\in\IR^\IN\;|\;d((x_n)_{n\in\IN},(0)_{n\in\IN})<1)\}=\{(x_n)_{n\in\IN}\in\IR^\IN\;|\;\forall n\in\IN\colon \alpha_nd_n(x_n,0)<1\}=\{(x_n)_{n\in\IN}\in\IR^\IN\;|\;\forall n\in\IN\colon \frac{1}{n}|x_n-0|<1\}=\{(x_n)_{n\in\IN}\in\IR^\IN\;|\;\forall n\in\IN\colon |x_n|
die Eigenschaft [mm] $U\in [/mm] T$ (da Mengen der Form [mm] $U_a(x)$ [/mm] in jedem metrischen Raum offen sind), aber nicht [mm] $U\in\Lambda$ [/mm] (überlege dazu: KEINE Menge der Form [mm] $V=\prod_{n=1}^zV_n\times\prod_{n=z+1}^\infty\IR$ [/mm] mit [mm] $z\in\IN$ [/mm] und [mm] $\emptyset\not=V_n\subseteq\IR$ [/mm] erfüllt [mm] $V\subseteq [/mm] U$. Also kann die nichtleere Menge $U$ nicht als Vereinigung von Mengen dieser Form geschrieben werden).

Also [mm] $T\not=\Lambda$. [/mm]

Bezug
                                                        
Bezug
Gleichheit von Topologien 2: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:22 Mo 27.10.2014
Autor: Peter_123

Und wenn ich das von der Menge

$ [mm] U_a(x)=\ldots=\{y \in Y : \forall n\in\IN\colon \alpha_{n}d_{n}(x_{n},y_{n}) < a\} [/mm] $ zusätzlich fordere - also dass jeweils [mm] d_{n} \le [/mm] 1 ist

Passt dann der Rest?

Lg Peter

Bezug
                                                                
Bezug
Gleichheit von Topologien 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:31 Mo 27.10.2014
Autor: tobit09


> Und wenn ich das von der Menge
>
> [mm]U_a(x)=\ldots=\{y \in Y : \forall n\in\IN\colon \alpha_{n}d_{n}(x_{n},y_{n}) < a\}[/mm]
> zusätzlich fordere - also dass jeweils [mm]d_{n} \le[/mm] 1 ist
>
> Passt dann der Rest?

Bitte poste deinen Beweisversuch einmal mit allen Korrekturen (und möglichst vielen Erklärungen) im Zusammenhang.

Ich blicke nämlich leider nicht mehr durch...


(Leider habe ich frühestens Nachmittag wieder Zeit.)

Bezug
                                                                        
Bezug
Gleichheit von Topologien 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Di 28.10.2014
Autor: Peter_123

Hallo,


Das Beispiel hat sich geklärt - prinzipiell hat es so gepasst wie ich das gemacht habe - deine Anmerkung, dass [mm] d_{n} \le [/mm] 1 lt. Angabe vorausgesetzt war , musste ich dann auch in die Umgebung einfließen lassen - dann hat eigentlich der Rest gepasst.


Vielen Dank für die Bemühungen


Lg Peter

Ps: Gleich kommt aber noch ein nettes Topologie Beispiel

Bezug
        
Bezug
Gleichheit von Topologien 2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 So 26.10.2014
Autor: tobit09

Hallo Peter_123!


> Seien [mm](Y_{n},d_{n})[/mm] metrische Räume mit [mm]d_{n}(x_{n},y_{n}) \le 1[/mm]
> , [mm]x_{n},y_{n} \in Y_{n}[/mm] und sei [mm]T_{n}[/mm] die von [mm]d_{n}[/mm]
> induzierte Topologie auf [mm]Y_{n}.[/mm] Auf der Menge
> [mm]Y:=\produkt_{n \in \mathbb{N}}Y_{n}[/mm] haben wir dann die
> Metrik d :
>  [mm]d((x_{n},y_{n}) := max_{n \in \mathbb{N}} \alpha_{n}d_{n}(x_{n},y_{n})[/mm]
> , wobei [mm](\alpha_{n}[/mm] > 0 und [mm]\alpha_{n} \to[/mm] 0)
>  sowie die Topologie T die von der Metrik auf Y iduziert
> wird, aber auch die Produkttopologie [mm]\Lambda[/mm] der Topologien
> [mm]T_{n}.[/mm]
>  Zeige, dass T = [mm]\Lambda[/mm]

Hier ist eigentlich erst einmal zu überlegen, dass das Maximum aus der Definition von d überhaupt existiert.
Aber das ist mehr Analysis als Topologie...

EDIT: Außerdem wäre eigentlich noch zu zeigen, dass $d$ überhaupt eine Metrik ist.


Vorweg: Mir erscheint es keine gute Idee zu sein, mit Äquivalenzumformungen zu arbeiten. Jede einzelne der beiden Inklusionen [mm] $T\subseteq\Lambda$ [/mm] und [mm] $\Lambda\subseteq [/mm] T$ erscheint mir für sich genommen komplex genug, so dass man sich es nicht noch komplizierter machen sollte durch den Versuch, mit einer Äquivalenzkette auszukommen.


> Nehmen wir uns eine beliebige offene Menge in T her, also

Du meinst: Wir nehmen uns eine beliebige Teilmenge von [mm] $O\subseteq [/mm] Y$ her.

Dann gelten (so behauptest du zumindest) die Äquivalenzen:
  

> [mm]O \in T[/mm]
> [mm]\gdw[/mm]  [mm]\forall x = (x_{n})_{n \in \mathbb{N}} \in O[/mm]
> [mm]\Rightarrow[/mm]  [mm]\exists a > 0 : x \in U_{a}(x) \subseteq O[/mm]

(Lass den Pfeil [mm] $\Rightarrow$ [/mm] hier und in den folgenden Zeilen weg.)

Ja.

Das [mm] $x\in U_a(x)$ [/mm] ist überflüssig, denn das gilt natürlich sowieso für jedes $a>0$.


> [mm]\gdw[/mm]  [mm]\forall x \in O[/mm] [mm]\Rightarrow[/mm]  [mm]\exists a > 0 : x \in \produkt_{n=1}^{z} U_{a/\alpha_{n}}(x_{n}) \times \produkt_{n=z+1}^{\infty}x_{n} \subseteq O[/mm]

Was meinst du mit z?

Was meinst du mit dem Produkt der [mm] $x_n$ [/mm] für [mm] $n\ge [/mm] z+1$?
Bedenke, dass die [mm] $x_n$ [/mm] irgendwelche ELEMENTE und (im Allgemeinen) nicht Teilmengen von [mm] $Y_n$ [/mm] sind.
Meinst du vielleicht in diesem rechten Produkt [mm] $Y_n$ [/mm] anstelle von [mm] $x_n$? [/mm]


> was meint ihr bis hier ? ich bin mir gar nicht so sicher ,
> ob man die zweite Äquivalenz einfach so hinschreiben
> kann.
>  
> - man kann das natürlich über [mm]U_{a}(x)[/mm] = [mm]\{y \in Y : d(x,y) < a\}[/mm]
> und umformen begründen.


> aber mal weiter:
>  
> [mm]\gdw[/mm]  [mm]\forall x \in O[/mm] [mm]\Rightarrow[/mm]  [mm]\exists a > 0 : x \in \produkt_{n=1}^{z} U_{a/\alpha_{n}}(x_{n}) \times \produkt_{n=z+1}^{\infty}x_{n} \subseteq O[/mm]
>  
> [mm]\gdw[/mm]  [mm]\forall x \in O \exists O_{n} \in T_{n} : x \in \produkt_{n=1}^{z}O_{n} \times \produkt_{z+1}^{\infty} x_{n} \subseteq O[/mm]

Wie begründest du die Richtung [mm] "$\Leftarrow$"? [/mm]
Wie konstruierst du also das gesuchte $a>0$ zu beliebig vorgegebenem [mm] $x\in [/mm] O$?


> also
> [mm]\forall x \in O \exists O_{n'} : O = \bigcup_{x \in O} \produkt_{n=1}^{z}O_{n'} \times \produkt_{z+1}^{\infty} x_{n}[/mm]

Vermutlich meinst du in etwa:

[mm] $\iff$ [/mm] Es existiert eine Familie [mm] $(O_n^x)_{n\in\IN,x\in O}$ [/mm] mit [mm] $O_n^x\in T_n$ [/mm] für alle [mm] $n\in\IN$ [/mm] und alle [mm] $x\in [/mm] X$ sowie eine Familie [mm] $(z_x)_{x\in O}$ [/mm] natürlicher Zahlen, so dass

     [mm] $O=\bigcup_{x\in O}\left(\produkt_{n=1}^{z_x}O_{n}^x \times \produkt_{n=z_x+1}^{\infty} Y_n\right)$. [/mm]


Diese Eigenschaft wäre  - wie man sich überlegen kann - äquivalent zu [mm] $O\in\Lambda$. [/mm]


> also T = [mm]\Lambda[/mm]


Abgesehen davon, dass ich nicht bei allen Einzelaussagen verstehe, wie sie gemeint sind: Du überlässt für meinen Geschmack sehr viel an Überlegungen dem Leser.

Daher noch mal mein Appell: Weise beide Inklusionen getrennt nach.


(Angesichts der nahenden Prüfung würde ich mich jetzt an deiner Stelle bis dahin aber nicht mehr dieser Aufgabe widmen.)


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]