Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:48 Mi 18.10.2006 | Autor: | Binu |
Aufgabe | Gegeben seien die Gerade g1 = m1x+b und g2 = m2x+c. Wir definieren: g1=g2 [mm] \gdw [/mm] x [mm] \in \IR [/mm] (m1x+b = m2x+c). Beweisen Sie: g1 = g2 [mm] \gdw [/mm] m1 = m2 [mm] \wedge [/mm] b = c.
|
Wer kann mir einen Ansatz zur Lösung dieser Aufgabe nennen?
Vielen Dank im vorraus...
|
|
|
|
> Gegeben seien die Gerade [mm] g_1 [/mm] = [mm] m_1 [/mm] x+b und [mm] g_2 [/mm] = [mm] m_2 [/mm] x+c. Wir
> definieren: [mm] g_1=g_2 \gdw [/mm] für alle x [mm] \in \IR [/mm] : [mm] (m_1 [/mm] x+b = [mm] m_2 [/mm] x+c). Beweisen
> Sie: [mm] g_1 [/mm] = [mm] g_2 \gdw m_1 [/mm] = [mm] m_2 \wedge [/mm] b = c.
Hallo,
zur Rückrichtung ist ja wenig zu sagen, das ist seeeeeeehr einfach. Oder?
Also die Hinrichtung "==>": Sei also [mm] g_1=g_2.
[/mm]
Nach Voraussetzung gilt dann für alle x [mm] \in \IR [/mm] : [mm] (m_1 [/mm] x+b = [mm] m_2 [/mm] x+c).
Für alle x! Also insbesondere für x=0.
Nun setz mal x=0 ein . Daraus folgt ja ...
Also ist [mm] m_1 [/mm] x+b [mm] =m_2 [/mm] x+...
==>...
Gruß v. Angela
|
|
|
|