www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Geeignete Näherung
Geeignete Näherung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geeignete Näherung: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 18:22 Mi 04.10.2006
Autor: wiczynski777

Aufgabe
Berechnen Sie A durch geeignete Näherung
[mm] A=\wurzel{1+0,01^4}-(1+5*10^{-9}) [/mm]
Ergebnis soll sein [mm] A=-1,25*10^{-17} [/mm]
Hier ein Beispiel aus der Vorlesung zum besseren Verständnis der Aufgabenstellung:
[mm] (1,00005)^3-1,0001500075=(5*10^{-5})^3=1,25*10^{-13} [/mm]
[mm] (1+5*10^{-5})^3=1^3+3*1^2*5*10^{-5}+3*1*(5*10^{-5})^2+(5*10^{-5})^3 [/mm]
Ganz klar zu erkennen ist die binomische Formel [mm] a^3+3*a^2*b+3*a*b^2+b^3 [/mm]
Kann mann die obere Aufgabe A=... auch so zusammenfassen?
Wenn ich den Ausdruck so schreibe:
[mm] (1+1*10^{-8})^{1/2}-(1+5*10^{-9}) [/mm] dann komme ich auf Null,
[mm] (1+1*10^{-8})^{1/2}=(1+5*10^{-9}) [/mm] = 1,000000005 [mm] \Rightarrow [/mm] =0
das Ergebniss ist aber nicht ganz Null obwohl die Zahl sehr klein ist [mm] (-1,25+10^{-17}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Kann mir jemand helfen ich komme nicht weiter mit der Aufgabe

        
Bezug
Geeignete Näherung: Doppelposting
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mi 04.10.2006
Autor: Loddar

Hallo wiczynski!


Bitte keine Doppelpostings hier innerhalb des MatheRaumes einstellen ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]