www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Gebrochenrationale Fkt.
Gebrochenrationale Fkt. < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale Fkt.: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 11.11.2009
Autor: DjHighlife

Hi,

angenommen ich habe 2 Graphen, die sich in einem Intervall, zB von 0 bis 5, NICHT schneiden. Ich soll untersuchen, wo die beiden  am weitesten voneinander entfernt sind.

Ich würde dabei folgendermasen vorgehen:

Da sie sich nicht schneiden würde ich die größere Funktion - kleinere Funktion rechnen, dann diese ableiten und davon das Maximum berechnen.

Stimmt das so?

Was mache ich, wenn sie sich schneiden?

mfg,
Michael

        
Bezug
Gebrochenrationale Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Do 12.11.2009
Autor: glie


> Hi,
>  
> angenommen ich habe 2 Graphen, die sich in einem Intervall,
> zB von 0 bis 5, NICHT schneiden. Ich soll untersuchen, wo
> die beiden  am weitesten voneinander entfernt sind.

Da wäre noch gut, wenn die beiden Funktionen auf dem abgeschlossenen Intervall stetig sind.

>  
> Ich würde dabei folgendermasen vorgehen:
>  
> Da sie sich nicht schneiden würde ich die größere
> Funktion - kleinere Funktion rechnen, dann diese ableiten
> und davon das Maximum berechnen.
>  
> Stimmt das so?

[ok]

>  
> Was mache ich, wenn sie sich schneiden?

Im Prinzip genauso, aber da ändert sich doch dann höchstwahrscheinlich "größere" und "kleinere"

Gruß Glie

>  
> mfg,
>  Michael


Bezug
        
Bezug
Gebrochenrationale Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 07:34 Do 12.11.2009
Autor: fred97


> Hi,
>  
> angenommen ich habe 2 Graphen, die sich in einem Intervall,
> zB von 0 bis 5, NICHT schneiden. Ich soll untersuchen, wo
> die beiden  am weitesten voneinander entfernt sind.
>  
> Ich würde dabei folgendermasen vorgehen:
>  
> Da sie sich nicht schneiden würde ich die größere
> Funktion - kleinere Funktion rechnen, dann diese ableiten
> und davon das Maximum berechnen.
>  
> Stimmt das so?

Das Funktioniert nicht immer so !

Beispiel: f(x) [mm] =x^2+1, [/mm] g(x) = 0 für x [mm] \in [/mm] [-1,1]

h(x):=f(x)-g(x) = [mm] x^2+1, [/mm] h'(x) = 2x

         h'(x) = = [mm] \gdw [/mm] x=0

Es ist aber max{ f(x)-g(x) : x [mm] \in [/mm] [-1,1] } = h(1) = h(-1) = 2

FRED



>  
> Was mache ich, wenn sie sich schneiden?
>  
> mfg,
>  Michael


Bezug
                
Bezug
Gebrochenrationale Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:42 Do 12.11.2009
Autor: glie


> > Hi,
>  >  
> > angenommen ich habe 2 Graphen, die sich in einem Intervall,
> > zB von 0 bis 5, NICHT schneiden. Ich soll untersuchen, wo
> > die beiden  am weitesten voneinander entfernt sind.
>  >  
> > Ich würde dabei folgendermasen vorgehen:
>  >  
> > Da sie sich nicht schneiden würde ich die größere
> > Funktion - kleinere Funktion rechnen, dann diese ableiten
> > und davon das Maximum berechnen.
>  >  
> > Stimmt das so?
>  
> Das Funktioniert nicht immer so !
>  
> Beispiel: f(x) [mm]=x^2+1,[/mm] g(x) = 0 für x [mm]\in[/mm] [-1,1]
>  
> h(x):=f(x)-g(x) = [mm]x^2+1,[/mm] h'(x) = 2x
>  
> h'(x) = = [mm]\gdw[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

x=0

Hallo fred,

das ist das Minimum. Kann man also sagen, dass man, falls man im angegebenen Intervall kein Maximum findet, einfach die Intervallgrenzen untersucht? Ich denke schon.

Gruß Glie


>  
> Es ist aber max{ f(x)-g(x) : x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

[-1,1] } = h(1) = h(-1)

> = 2
>  
> FRED
>  
>
>
> >  

> > Was mache ich, wenn sie sich schneiden?
>  >  
> > mfg,
>  >  Michael  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]