Gaußsche Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:53 Fr 25.05.2012 | Autor: | quasimo |
Aufgabe | Sei $ [mm] \IZ[i] [/mm] $ = $ [mm] \{ x + iy | x,y \in \IZ \} [/mm] $
$ [mm] N(x+iy)=x^2 [/mm] $ + $ [mm] y^2 [/mm] $
N: $ [mm] \IZ[i] [/mm] $ -> $ [mm] \IZ [/mm] $
Zeige
Die menge der Einheiten
[mm] \IZ[i]^{\*} [/mm] = [mm] \{ \alpha \in \IZ[i] | N(\alpha)=1\}=\{1,-1,i,-i\} [/mm] |
[mm] \alpha \in \IZ[i] [/mm] wird einheit genannt, wenn es ein multiplikativ Inverses in [mm] \IZ[i] [/mm] besitzt.
d.h. wenn [mm] \beta \in \IZ[i] [/mm] mit der Eigenschaft [mm] \alpha \beta [/mm] = 1 existiert
[mm] \alpha [/mm] = [mm] \alpha_1 [/mm] +i [mm] \alpha_2
[/mm]
[mm] 1/\alpha [/mm] = [mm] \frac{\alpha_1 - i \alpha_2}{\alpha_1^2 + \alpha_2^2} [/mm] = [mm] \frac{\alpha_1}{\alpha_1^2 + \alpha_2^2} [/mm] - i* [mm] \frac{\alpha_2}{\alpha_1^2 + \alpha_2^2}
[/mm]
?
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:31 Fr 25.05.2012 | Autor: | felixf |
Moin!
> Sei [mm]\IZ[i][/mm] = [mm]\{ x + iy | x,y \in \IZ \}[/mm][/i][/mm]
> [mm][i] [mm]N(x+iy)=x^2[/mm] + [mm]y^2[/mm][/i][/mm]
> [mm][i] N: [mm]\IZ[i][/mm] -> [mm]\IZ[/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]Zeige[/i][/mm][/i][/mm]
> [mm][i][mm][i] Die menge der Einheiten[/i][/mm][/i][/mm]
> [mm][i][mm][i] [mm]\IZ[i]^{\*}[/mm] = [mm]\{ \alpha \in \IZ[i] | N(\alpha)=1\}=\{1,-1,i,-i\}[/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i] [/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm]\alpha \in \IZ[i][/mm] wird einheit genannt, wenn es ein [/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i]multiplikativ Inverses in [mm]\IZ[i][/mm] besitzt.[/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i] d.h. wenn [mm]\beta \in \IZ[i][/mm] mit der Eigenschaft [mm]\alpha \beta[/mm] = [/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i]1 existiert[/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i] [/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm]\alpha[/mm] = [mm]\alpha_1[/mm] +i [mm]\alpha_2[/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i] [mm]1/\alpha[/mm] = [mm]\frac{\alpha_1 - i \alpha_2}{\alpha_1^2 + \alpha_2^2}[/mm] [/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i]= [mm]\frac{\alpha_1}{\alpha_1^2 + \alpha_2^2}[/mm] - i* [/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm]\frac{\alpha_2}{\alpha_1^2 + \alpha_2^2}[/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i] [/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i]?[/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i][mm][i][mm][i][mm][i][mm][i][mm][i] LG [/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm][/i][/mm]
Hier kannst du schon sehen, dass es nur eine Einheit sein kann, wenn [mm] $\alpha_1^2 [/mm] + [mm] \alpha_2^2$ [/mm] ein Teiler sowohl von [mm] $\alpha_1$ [/mm] wie auch von [mm] $\alpha_2$ [/mm] ist (in [mm] $\IZ$!).
[/mm]
Sobald eins von beiden vom Betrag her $> 1$ ist, kannst du sofort sehen, dass das nicht geht. Also muss [mm] $\alpha_1, \alpha_2 \in \{ -1, 0, 1 \}$ [/mm] sein. Jetzt kannst du dir noch ueberlegen, dass nicht beide ungleich 0 sein koennen (geht genauso einfach). Uebrig bleiben genau die Faelle [mm] $\alpha_1 [/mm] + i [mm] \alpha_2 \in \{ \pm 1, \pm i \}$.
[/mm]
Alternativ kannst du auch mit der Norm arbeiten: aus $1 = [mm] \alpha \cdot \beta$ [/mm] folgt $1 = N(1) = [mm] N(\alpha) \cdot N(\beta)$. [/mm] Damit muss [mm] $N(\alpha) [/mm] = [mm] N(\beta) [/mm] = 1$ sein. Die einzigen Elemente mit Norm 1 sind jedoch [mm] $\pm [/mm] 1, [mm] \pm [/mm] i$, und alle diese sind Einheiten (wie du sofort nachrechnest).
LG Feilx
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:49 Fr 25.05.2012 | Autor: | quasimo |
> Die einzigen Elemente mit Norm 1 sind jedoch $ [mm] \pm [/mm] 1, [mm] \pm [/mm] i $, und alle diese sind Einheiten (wie du sofort nachrechnest).
Mir ist klar, dass 1,-1, i,-i die Norm 1 haben.
Aber wie kann man sicher gehen, dass sonst kein element die norm 1 hat?
> Sobald eins von beiden vom Betrag her $ > 1 $ ist, kannst du sofort sehen, dass das nicht geht.
Wie siehst du das?
LG
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:09 Fr 25.05.2012 | Autor: | fred97 |
> > Die einzigen Elemente mit Norm 1 sind jedoch [mm]\pm 1, \pm i [/mm],
> und alle diese sind Einheiten (wie du sofort nachrechnest).
> Mir ist klar, dass 1,-1, i,-i die Norm 1 haben.
> Aber wie kann man sicher gehen, dass sonst kein element
> die norm 1 hat?
Sind x.y [mm] \in \IZ [/mm] und ist [mm] x^2+y^2=1, [/mm] so ist
[mm] x^2 \le x^2+y^2=1, [/mm] also |x| [mm] \le [/mm] 1.
D.h.: x [mm] \in \{0,1,-1\}
[/mm]
Ebenso: y [mm] \in \{0,1,-1\}
[/mm]
Beachte noch, dass wegen [mm] x^2+y^2=1 [/mm] nicht gelten kann: x=y=0.
FRED
>
>
> > Sobald eins von beiden vom Betrag her [mm]> 1[/mm] ist, kannst du
> sofort sehen, dass das nicht geht.
> Wie siehst du das?
>
> LG
|
|
|
|