www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Gammafunktion
Gammafunktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gammafunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 Do 23.09.2021
Autor: Martinius

Aufgabe
1) Beweisen Sie:  [mm] $\Gamma(n+1) [/mm] = [mm] n*\Gamma(n)$ [/mm]  für  $  [mm] n\in\IN [/mm] $

2) Zeigen Sie: [mm] $\Gamma(n+1) [/mm] = n!$  für  $  [mm] n\in\IN [/mm] $

Hallo liebe Leute,

könnte einer von euch bitte einmal die Aufgaben (aus einem Schulbuch) angucken. Bei Beweisen bin ich immer unsicher.

                   Die Gammafunktion:   [mm] $\Gamma(n) [/mm] = [mm] \integral_{0}^{\infty} x^{n-1}e^{-x} \;dx$ [/mm]


1)  [mm] $\Gamma(n+1) [/mm] = [mm] \integral_{0}^{\infty} x^{n+1-1}e^{-x} \;dx \;=\;\integral_{0}^{\infty} x^{n}e^{-x}\;dx\;=\;\lim_{b \to \infty} \left[-x^n*e^{-x} \right]_{0}^{b}+ n*\integral_{0}^{\infty} x^{n-1}e^{-x}\;dx\;=\;-(0-0)+n*\Gamma(n) [/mm] $


2)      I.A.  n = 0  [mm] $\Gamma(0+1)\;=\; 0\;! \;=\;1$ [/mm]

I.V.  Es wird angenommen, dass [mm] $\Gamma(n+1) [/mm] = [mm] n;\!$ [/mm]  für ein [mm] $n\in\IN$ [/mm] gilt.

I.S. Schluss von n auf n+1:  [mm] $\Gamma((n+1)+1) \;=\;(n+1)*\Gamma(n+1)$ [/mm]  nach Induktionsvoraussetzung

$= [mm] \; (n+1)\;!$ [/mm]


Besten Dank für die Mühe!

LG, Martinius

        
Bezug
Gammafunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Do 23.09.2021
Autor: Gonozal_IX

Hiho,

> I.V.  Es wird angenommen, dass [mm]\Gamma(n+1) = n;\![/mm]  für ein
> [mm]n\in\IN[/mm] gilt.

Hier ist durch deinen Aufschrieb das Fakultätszeichen abhanden gekommen, im Code steht es aber, daher => ok.

>  
> I.S. Schluss von n auf n+1:  [mm]\Gamma((n+1)+1) \;=\;(n+1)*\Gamma(n+1)[/mm]
>  nach Induktionsvoraussetzung

Wenn du es so schreibst, ist nicht klar, worauf sich das "nach Induktionsvoraussetzung" bezieht. Auf das davor, oder das danach… Das davor ist natürlich das, was du vorher gezeigt hast.

Der Rest passt.

Gruß,
Gono

Bezug
                
Bezug
Gammafunktion: Kritik
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Do 23.09.2021
Autor: statler

Hallo ihr beiden,
der logisch korrekte Beweis des Induktionsanfangs (aus der Definition) fehlt doch.
Gruß Dieter

Bezug
                        
Bezug
Gammafunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:50 Fr 24.09.2021
Autor: Gonozal_IX

Hiho,

>  der logisch korrekte Beweis des Induktionsanfangs (aus der Definition) fehlt doch.

da hast du natürlich völlig recht!
Danke für den Hinweis.

Gruß,
Gono

Bezug
                                
Bezug
Gammafunktion: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Sa 02.10.2021
Autor: Martinius

Hallo liebe Leute,

habt besten Dank für eure Antworten!

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]