www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Funktionsmodulation
Funktionsmodulation < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsmodulation: Brauche Rat
Status: (Frage) beantwortet Status 
Datum: 19:18 Mi 16.01.2013
Autor: Jack_D

Hallo Gemeinde.

Ich komm eigentlich aus einer anderen Ecke, hab jetzt aber ein Problem was ich ohne Mathematischen Ansatz nicht weiter bearbeiten kann.

Worum geht es.

Ich Bin daran einen "Tacho zu erstellen"
Dieser ist ein Halbkreis der "nach oben steht". Er hat die Winkelangabe 0-180°
Der Mittelpunkt bzw dessen senkrechte Verlängerung ist der 0 Punkt und entspricht demzufolge 90°

Jetzt möchte ich folgendes Realisieren.
Der Halbkreis Symbolisiert -100% bis +100% (Mitte 0%)
Und in Abhängigkeit des eingegeben Prozentwertes soll sich der Zeiger bewegen.
Soweit so einfach wenn sich der Zeiger linear bewegen soll.

Dies ist aber leider nicht der Fall.

Denn (und das ist mein Problem) der Zeigerausschlag soll, je näher er an dem Mittelpunkt (0%) ist größer ausschlagen. Analog je mehr er sich der 100% (-100%) nähert wird er langsamer (Lässt sich doof beschreiben)

Beispiel.
Wenn ich die Prozentzahl von 0% auf 10% ändere, soll sich der Zeiger nicht (wie bei linear) um 9° bewegen sondern. meinetwegen 20°
wenn ich dagegen die Prozentzahl von 80% auf 90% ändere, soll es sich nicht um 9° sondern zb. nur um 2° bewegen.

Wie kann ich also die Funktion formulieren, dass es eine gleichbleibender Anstieg / Abnahme der "Zeigergeschwindigkeit" zustande kommt.

Ich hatte eigentlich an eine quadratische Gleichung gedacht, aber die dürfte es genau verkehrt herum machen (also "innen" langsam "aussen" schnell) Müsste dann ja eigentlich eine x^-1 Fkt. werden. Oder?
Ach, ich hab keine Ahnung =)

Vielen Dank schonmal für die Gedanken die ihr evtl. Opfert.

Grüße

Ich hoffe mich einigermaßen plausibel ausgedrückt zu haben wenn nicht, gern fragen. Wenn ich im Falschen Forumteil gelandet bin, bitte gern verschieben.


Der Form halber
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionsmodulation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Mi 16.01.2013
Autor: leduart

Hallo
du suchst schon einen quadratischen Zusqmmenhang,nur hast du ihn falsch herum gemacht!
Du hast  Ausschlag=Winkel im Quadrat, was du brauchst ist Winkel = Ausschlag im Quadrat, oder A [mm] =sqrt(\alpha) [/mm]
willst du die Skala aendern, oder den zeiger regeln?
von 0 bis 1% ist es dann soviel wie von 1 bis4, von 4 bis 9 , von 81% bis 100%
wenn du es noch staerker verlangsamen willst nimm log statt Wurzel
Gruss leduart


Bezug
                
Bezug
Funktionsmodulation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Mi 16.01.2013
Autor: Jack_D

Hallo und vielen Dank für deine Antwort.

Also,

Ich mochte den Zeiger regeln. Wie mache ich das?
Ich hab bisher linear den Winkel errechnet und dann über das Bogenmaß und =sin() und =.cos() den Zeiger getriggert.

Das heisst es kommt von extern ein Prozentwert und den muss ich so "umformulieren" das der Winkel dann entsprechend reagiert.

Also wenn ich dich richtig verstanden hab, muss ich jetzt

= Wurzel(Prozent*n)
rechnen um den Winkel adäquat zu verändern?


Thanks in advance

Grüße

Bezug
                        
Bezug
Funktionsmodulation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mi 16.01.2013
Autor: chrisno

Bei 100% soll der Ausschlag [mm] $\bruch{\pi}{2}$ [/mm] sein.
Dann muss [mm] $\bruch{\pi}{2} [/mm] = [mm] \wurzel{100*n}$ [/mm] gelten. Falls es Dich nicht stört, verlagere ich mal das n, das macht keinen echten Unterschied: [mm] $\bruch{\pi}{2} [/mm] = [mm] n*\wurzel{100}$. [/mm] Damit gilt: [mm] $\bruch{\pi}{20} [/mm] = n [mm] \approx [/mm] 0,157$. Probiers mal aus, ob es Dir gefällt.
[mm] $\alpha [/mm] = 0,157 * [mm] \wurzel{p}$ [/mm] mit dem Prozentsatz p.

Bezug
                                
Bezug
Funktionsmodulation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mi 16.01.2013
Autor: Jack_D

Hallo ChrisNo

Was ich nicht so ganz verstehe, wieso der Ausschlag pi-halbe sein muss?
Mit meinem laienhaften Verstand, komm ich dann auf 1,55 und das müsste Ja dann 100% entsprechen.

Also da komm ich nicht mit =)

Ich hab es nun "anders" gelöst

und zwar

=WENN(H12<=0;90- WURZEL(ABS(H12*100))*9; WENN(H12>0;90+WURZEL(ABS(H12*100))*9;"FALSCH"))

Also "Deutsch"

Für den Bereich 0-90° (also -100% - 0)
90 - wurzel(Betrag(Prozentzahl*100))*9

für den Bereich 90° - 180° (also 0% - 100%)
90 + wurzel(Betrag(Prozentzahl*100))*9

Erfüllt genau meinen Sinn =)

Aber Erklär mir doch bitte noch das pi-halbe das versteh ich wirklich nicht.

Thanks in advance

Bezug
                                        
Bezug
Funktionsmodulation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 16.01.2013
Autor: chrisno

Du hattest vom Bogenmaß geschrieben, also habe ich im Bogenmaß gerechnet. Nun das Gleiche in Grad:
Bei 100% soll der Ausschlag 90° sein.
Dann muss $ 90° = [mm] \wurzel{100\cdot{}n} [/mm] $ gelten. Falls es Dich nicht stört, verlagere ich mal das n, das macht keinen echten Unterschied: $ 90° = [mm] n\cdot{}\wurzel{100} [/mm] $. Damit gilt: $ [mm] \bruch{90°}{10} [/mm] = n = 9 $. Probiers mal aus, ob es Dir gefällt.
$ [mm] \alpha [/mm] = 9 [mm] \cdot{} \wurzel{p} [/mm] $ mit dem Prozentsatz p.
Das stimmt dann mit Deiner Rechnung überein.

Zum Bogenmaß: Die Winkelangabe in Grad ist praktisch, aber auch willkürlich. Das erkennst Du schon daran, dass es auch Leute gibt, die einen rechten Winkel in 100° teilen. Für Mathematiker ist die natürliche Art einen Winkel anzugeben die entsprechende Länge des Kreisbogenstücks auf dem Einheitskreis (der mit dem Radius 1). Der Winkel eines Vollkreises mit 360° entspricht dann dem Umfang des Kreises [mm] $2\pi$. [/mm] Zum 90° Winkel gehört ein Viertelkreisbogen also [mm] $\bruch{\pi}{2}$. [/mm]

Bezug
                                                
Bezug
Funktionsmodulation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Mi 16.01.2013
Autor: Jack_D

Hallo ChrisNo

Vielen Dank für deine Ausführung.

Also hab ich ja duch zufall sogar die richtige Lösung gewählt. Nur das ich es mathematisch somit nicht beweisen konnte =)

Und Bogenmaß hab ich zwar schonmal gehört, aber wenig damit gearbeitet.
Ich hab das nur gezwungenermaßen verwand um in Excel einen Tacho abzubilden =)

Aber das der Einheitskreis einen umfang von 2 pi  hab ich noch nie gehört.
so wie du es aber erklärst, ist es durchaus Sinnvoll, auch was du vorher geschrieben hast =)

Vielen Dank also für deine ausführlich Information. Hat mich auf jeden Fall weiter gebildet =)

Wen das Ergebnis in xls interessiert, der kann sich gern melden, ich lad das dann hoch (wenn das hier geht) oder schick es per mail =)


Also nochmal vielen Dank


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]