Funktionsgleichung bestimmen < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:22 Mo 13.11.2006 | Autor: | Gizmo |
Aufgabe | Ein Volleyballfeld. Der Rückschlagpunkt (A) liegt 4m vor dem Netz in einer Höhe von 2m. Der Ball überfliegt das Netz in einer Höhe von 3,2m (B) und wird von einem gegnerischen Spieler in 1,5m Höhe berührt.
Aufgaben:
a) Bestimmen Sie die Funktionsgleichung der durch den Schlag festgelegten Parabel!
b) In welcher Entfernung vom Netz hätte der Ball den Boden berührt, wenn seine Flugbahn nicht von einem Spieler gestört worden wäre?
( Es gibt hierzu eine Zeichnung, die den Nullpunkt beim Netz festlegt ) |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Gegeben sind:
A(-4/2)
B(0/3,2)
C(5/1,5)
Es handelt sich um eine Parabel gemäß ax²+bx+c ...
Soweit so gut, die Gleichungen kann ich ja noch aufstellen:
I: 16a - 4b + c = 2
II: c = 3,2
III: 25a + 5b + c = 1,5
Aber ab dann?
Ich find den Fehler einfach nicht.
Wie mans gewohnt ist versuche ich nun die Gleichungen aufzulösen. Da c ja bekannt ist (3,2) sollte das ansich kein Problem darstellen, aber anscheinend mach ich da trotzdem immer noch einen gravierenden Fehler.
III*5: 80a - 20b = -6
I*4:100a + 20b = -6,8
-----------------------
180a = -12,8
a = [mm] -\bruch{16}{225}
[/mm]
Durch einsetzen in die Gleichung I:
16 * [mm] (-\bruch{16}{225}) [/mm] - 4b + 3,2 = 2
erhalte ich dann:
b = [mm] \bruch{7}{450}
[/mm]
Aber sobald ich das versuche in eine der Gleichungen dann einzusetzen seh ich, dass es so nicht stimmen kann...
Kann mir irgendjemand genau meinen Fehler aufzeigen?
Vielleicht bekomm ich dann ja auch die Aufgabe b) hin...
Bin schon recht verzweifelt an dem Ding... glaube nach ca. 20 Versuchen weiß ich schon nimmer weiter...
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:38 Mo 13.11.2006 | Autor: | celeste16 |
bei mir kommts raus, hast dich vermutlich vertippt
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:30 Mo 13.11.2006 | Autor: | Vertex |
Hallo Gizmo,
wie celeste ihn ihrer Mitteilung schon sagte, sind deine errechneten Wert für a und b völlig korrekt.
Als Funktionsgleichung erhälst du also:
[mm] y(x)=-\bruch{32}{450}x^{2}+\bruch{7}{450}x+\bruch{1440}{450}
[/mm]
Als Kontrolle probieren wir das mal durch mit den Punkten:
A(-4/2)=>y(-4)=2
[mm] -\bruch{32}{450}*(-4)^{2}+\bruch{7}{450}*(-4)+\bruch{1440}{450}=
[/mm]
[mm] -\bruch{32}{450}*16-\bruch{28}{450}+\bruch{1440}{450}=
[/mm]
[mm] -\bruch{512}{450}-\bruch{28}{450}+\bruch{1440}{450}=
[/mm]
[mm] -\bruch{540}{450}+\bruch{1440}{450}=
[/mm]
[mm] \bruch{900}{450}=2
[/mm]
C(5/1,5)=>y(5)=1,5
[mm] -\bruch{32}{450}*(5)^{2}+\bruch{7}{450}*(5)+\bruch{1440}{450}=
[/mm]
[mm] -\bruch{32}{450}*25+\bruch{35}{450}+\bruch{1440}{450}=
[/mm]
[mm] -\bruch{800}{450}+\bruch{35}{450}+\bruch{1440}{450}=
[/mm]
[mm] -\bruch{800}{450}+\bruch{1475}{450}=
[/mm]
[mm] -\bruch{675}{450}=1,5
[/mm]
Kommt alles hin!
Jetzt noch die Funktion auf ihre Nullstellen untersuchen und du hast b) auch gelöst.
Viel Erfolg, Gruss,
Vertex
|
|
|
|