www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktionenschar
Funktionenschar < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:27 Mo 18.11.2019
Autor: wolfgangmax

Aufgabe
<br> Gegeben ist die Funktionenschar
fa(x)=x²+ax-4x+1
Bestimmen Sie die Extrempunkte des Graphen von fa in Abhängigkeit von a.
Für welche Werte von a liegt der Extrempunkt auf der x-Achse bzw. auf der y-Achse? 
 


<br>Die Berechnung des(r) Extrempunkte(s) ist ja einfach:
    fa'(x) = 2x+a-4
    fa'(x) = 0 (notwendige Bedingung)
         0 = 2x + a - 4
         x = 2- a/2
    Jetzt kann ich verschiedene Werte  für a einsetzen und die Koordinaten des Extrempunktes berechnen, dies solange bis ein a die geforderten Bedingungen erfüllt : schrittweises Lösungsverfahren.
Meine Frage geht aber dahin, das a zu berechnen, so dass die geforderten Bedingungen erfüllt werden.
Da hätte ich gerne einen Tipp!
Danke
     

        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Mo 18.11.2019
Autor: fred97


> <br> Gegeben ist die Funktionenschar
>  fa(x)=x²+ax-4x+1
>  Bestimmen Sie die Extrempunkte des Graphen von fa in
> Abhängigkeit von a.
>  Für welche Werte von a liegt der Extrempunkt auf der
> x-Achse bzw. auf der y-Achse? 
>   
>  
> <br>Die Berechnung des(r) Extrempunkte(s) ist ja einfach:
>      fa'(x) = 2x+a-4
>      fa'(x) = 0 (notwendige Bedingung)
>           0 = 2x + a - 4
>           x = 2- a/2

Richtig !


>      Jetzt kann ich verschiedene Werte  für a einsetzen
> und die Koordinaten des Extrempunktes berechnen, dies
> solange bis ein a die geforderten Bedingungen erfüllt :
> schrittweises Lösungsverfahren.


Das ist nicht effektiv und unbrauchbar !


>  Meine Frage geht aber dahin, das a zu berechnen, so dass
> die geforderten Bedingungen erfüllt werden.
>  Da hätte ich gerne einen Tipp!
>  Danke
>       


Setzen wir [mm] x_a:= [/mm] 2- [mm] \frac{1}{2}a. [/mm]

Der Graph von [mm] f_a [/mm] ist eine nach oben geöffnete Parabel. Damit ist der Scheitelpunkt [mm] S_a(x_a |f_a(x_a)) [/mm] auch der Tiefpunkt von [mm] f_a. [/mm]

Berechne also [mm] f_a(x_a). [/mm]

Damit gilt:

[mm] S_a [/mm] liegt auf der x - Achse genau dann, wenn [mm] f_a(x_a)=0 [/mm] ist.

[mm] S_a [/mm] liegt auf der y - Achse genau dann, wenn [mm] x_a=0 [/mm] ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]