www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Funktional
Funktional < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktional: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Mi 03.10.2007
Autor: Phecda

hi
unser dozent hat gesagt, dass integral sei ein funktional.
das heißt es ist eine funktion (Abbildung) die einer fkt eine zahl zuordnet.
ist ein funktional also immer eine abblidung von einer fkt auf eine Zahl? oder steckt mehr dahinter?
Die Ableitung ist doch dann auch ein Funktional?
Oder was heißt so genau der begriff. wikipedia sagt ja abbildung eines Vektorraums auf ein Körper.
super ^^

mfg

        
Bezug
Funktional: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Mi 03.10.2007
Autor: andreas

hi

>  unser dozent hat gesagt, dass integral sei ein
> funktional.
>  das heißt es ist eine funktion (Abbildung) die einer fkt
> eine zahl zuordnet.

im prinzip ja. du hast unten ja schon die (fast) korrekte definition genannt. nämlich sind für einen $K$-vektorraum $V$ die funktionale gerade die linearen abbildungen $f: V [mm] \longrightarrow [/mm] K$.


>  ist ein funktional also immer eine abblidung von einer fkt
> auf eine Zahl? oder steckt mehr dahinter?

wie oben geschrieben muss man eben noch fordern, dass die abbildungen linear sind. als vektorräume auf denen die funktionale definiert sind betrachtet man heute auch beliebige vektorräume, ursprünglich waren funktionale aber nur auf funktionenräumen definiert.


>  Die Ableitung ist doch dann auch ein Funktional?

nein. die ableitung bildet doch eine (differnzierbare) funktion wieder auf einen funktion ab, also nicht auf ein körperelement. aber etwa die auswertung der ableitung an einer bestimmten stelle ist ein funktional: sei $V = [mm] \{f: \mathbb{R} \longrightarrow \mathbb{R}: f \textrm{ differnzierbar} \}$ [/mm] der [mm] $\mathbb{R}$-vektorraum [/mm] der differnzierbaren funktionen, dann ist etwa $F: V [mm] \longrightarrow \mathbb{R}; [/mm] f [mm] \longmapsto [/mm] F(f) := f'(1)$ ein funktional. prüfe einfach nach, dass dies eine lineare abbildung von $V$ nach [mm] $\mathbb{R}$ [/mm] ist.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]