www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Frage zur Nullstelle
Frage zur Nullstelle < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur Nullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Mi 15.02.2012
Autor: Sin777

Aufgabe
Es sei [mm] \IF_{7}:=(\IZ/7\IZ,+,*), [/mm] f(X) = [mm] X^3 [/mm] + [mm] \overline{3}X^2 [/mm] + [mm] \overline{3}X [/mm] + [mm] \overline{3}. [/mm] Zeige f ist ist in [mm] \IF_{7}[X] [/mm] irreduzibel.

Die Lösung war, dass wir einfach alle Restklassen modulo 7 durchgegangen sind, eingesetzt haben und gezeigt haben, dass es keine Nullstelle gibt. Und da f vom Grad 3 ist folgt daraus, dass f auch irreduzibel ist.
Meine eigentlich Frage betrifft das [mm] \IZ/7\IZ. [/mm] Wenn wir zeigen sollen dass f hier keine Nullstelle besitzt, dann setzen wir einfach alle möglichen Werte in f ein und sehen dann, dass es nie [mm] \overline{0} [/mm] ergibt. Aber wieso setzen wir hier die Restklassen [mm] \overline{1}, \overline{2}, [/mm] usw. ein und nicht [mm] \IZ [/mm] + 3 usw. (also die eigentlichen Elemente aus [mm] \IZ/7\IZ)? [/mm] Was würde das überhaupt bedeuten, wenn wir die ganze Menge einsetzen? Was wäre der unterschied wenn in der Aufgabe nicht [mm] \IZ/7\IZ [/mm] sondern [mm] 7\IZ [/mm] stehen würde?

Ich bin ein wenig verwirrt und hoffe, ihr könnt mir folgen.

Danke im Voraus

        
Bezug
Frage zur Nullstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 15.02.2012
Autor: Diophant

Hallo,

> Meine eigentlich Frage betrifft das [mm]\IZ/7\IZ.[/mm] Wenn wir
> zeigen sollen dass f hier keine Nullstelle besitzt, dann
> setzen wir einfach alle möglichen Werte in f ein und sehen
> dann, dass es nie [mm]\overline{0}[/mm] ergibt. Aber wieso setzen
> wir hier die Restklassen [mm]\overline{1}, \overline{2},[/mm] usw.
> ein und nicht [mm]\IZ[/mm] + 3 usw. (also die eigentlichen Elemente
> aus [mm]\IZ/7\IZ)?[/mm] Was würde das überhaupt bedeuten, wenn wir
> die ganze Menge einsetzen? Was wäre der unterschied wenn
> in der Aufgabe nicht [mm]\IZ/7\IZ[/mm] sondern [mm]7\IZ[/mm] stehen würde?
>
> Ich bin ein wenig verwirrt und hoffe, ihr könnt mir
> folgen.

Weil das zwei Paar Stiefel sind: [mm] \IZ/7\IZ [/mm] ist hier der Restklassenkörper modulo 7, [mm] 7\IZ [/mm] ist das von 7 erzeugte Ideal über [mm] \IZ. [/mm]

Gruß, Diophant


Bezug
                
Bezug
Frage zur Nullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Mi 15.02.2012
Autor: Sin777

Trotzdem würde es ja beispielsweise heißen heißen [mm] f(3+\IZ) [/mm] und nicht [mm] f(\overline{3}), [/mm] oder?

Bezug
                        
Bezug
Frage zur Nullstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Mi 15.02.2012
Autor: felixf

Moin!

> Trotzdem würde es ja beispielsweise heißen heißen
> [mm]f(3+\IZ)[/mm] und nicht [mm]f(\overline{3}),[/mm] oder?

Du meinst vermutlich eher $3 + [mm] 7\IZ$, [/mm] oder? Das ist das gleiche wie [mm] $\overline{3}$. [/mm]

Beides ist die Restklasse von 3 in [mm] $\IZ/7\IZ$. [/mm]

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]