www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Frage:Tangenten von Funktionen
Frage:Tangenten von Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage:Tangenten von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 So 11.12.2005
Autor: moose

Hallo, ich hab 2 funktionen gegeben, bei denen ich nachweisen soll, das diese keine parallelen Tangenten aufweisen.
die 1. Funktion heißt f(x)=  [mm] \wurzel{x} [/mm]
die 2. Funktion heißt g(x) 1/x

ich habe mir gedacht, da die 1. Funktion nur positive, und die 2. nur negative Anstiege besitzt, können diese keine parallelen Tangenten haben. Aber das ist sicher kein mathematischer Nachweis. Gibt es Ansätze, wie diese Aufgabe gelöst werden könnte? vielen dank für unterstützung!

        
Bezug
Frage:Tangenten von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 So 11.12.2005
Autor: Zwerglein

Hi, moose,

> Hallo, ich hab 2 funktionen gegeben, bei denen ich
> nachweisen soll, das diese keine parallelen Tangenten
> aufweisen.
>  die 1. Funktion heißt f(x)=  [mm]\wurzel{x}[/mm]
>  die 2. Funktion heißt g(x) 1/x
>  
> ich habe mir gedacht, da die 1. Funktion nur positive, und
> die 2. nur negative Anstiege besitzt, können diese keine
> parallelen Tangenten haben. Aber das ist sicher kein
> mathematischer Nachweis. Gibt es Ansätze, wie diese Aufgabe
> gelöst werden könnte? vielen dank für unterstützung!

Also: Ich würde Deine Lösung anerkennen!
Aber Du kannst natürlich auch die beiden Ableitungen gleichsetzen und nachweisen, dass diese Gleichung keine Lösung hat:

[mm] \bruch{1}{2\wurzel{x}} [/mm] = - [mm] \bruch{1}{x^{2}} [/mm]  (x > 0)
...
[mm] \wurzel{x^{3}} [/mm] = -2 (unlösbar!)

mfG!
Zwerglein



Bezug
                
Bezug
Frage:Tangenten von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 So 11.12.2005
Autor: moose

vielen Dank für den Vorschlag. Könnten Sie das Umformen noch einen Tick umfangreicher darstellen? das mit den Wurzeln ist bei mir so ne Sache...besten Dank!

Bezug
                
Bezug
Frage:Tangenten von Funktionen: Vorschlag
Status: (Antwort) fertig Status 
Datum: 15:15 So 11.12.2005
Autor: dominik

Hallo
Bin damit einverstanden, allerdings ist es nicht nötig, so weit zu gehen:

> Hi, moose,
>  
> > Hallo, ich hab 2 funktionen gegeben, bei denen ich
> > nachweisen soll, das diese keine parallelen Tangenten
> > aufweisen.
>  >  die 1. Funktion heißt f(x)=  [mm]\wurzel{x}[/mm]
>  >  die 2. Funktion heißt g(x) 1/x
>  >  
> > ich habe mir gedacht, da die 1. Funktion nur positive, und
> > die 2. nur negative Anstiege besitzt, können diese keine
> > parallelen Tangenten haben. Aber das ist sicher kein
> > mathematischer Nachweis. Gibt es Ansätze, wie diese Aufgabe
> > gelöst werden könnte? vielen dank für unterstützung!
>
> Also: Ich würde Deine Lösung anerkennen!
>  Aber Du kannst natürlich auch die beiden Ableitungen
> gleichsetzen und nachweisen, dass diese Gleichung keine
> Lösung hat:
>  
> [mm]\bruch{1}{2\wurzel{x}}[/mm] = - [mm]\bruch{1}{x^{2}}[/mm]  (x > 0)

Nun ist der linke Term - wegen der Wurzel - immer positiv, der rechte - wegen des Quadrates - immer negativ, womit sie nicht gleich sein können. Dies genügt an sich.

[Weiter rechnen: Auf beiden Seiten den Kehrwert nehmen:

[mm] 2*\wurzel{x}=-x^2 [/mm]        / durch [mm] \wurzel{x} [/mm] dividieren
[mm] 2=-\bruch{x^2}{\wurzel{x}}=-\bruch{\wurzel{x^4}}{\wurzel{x}}=-\wurzel{\bruch{x^4}{x}}=-\wurzel{x^3} [/mm]     ]

>  ...
>  [mm]\wurzel{x^{3}}[/mm] = -2 (unlösbar!)
>  
> mfG!
>  Zwerglein
>  

Viele Grüsse
dominik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]