www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Fourierreihen
Fourierreihen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:10 Di 31.05.2011
Autor: Random

Aufgabe
Es sei f [mm] :\IR->\IR [/mm] gegeben durch die [mm] 2\pi-periodische [/mm] Fortsetzung der Funktion [mm] g:[-\pi,\pi]->\IR [/mm] mit

g(x) [mm] =\begin{cases} 2, & \mbox{für } |x|\le\bruch{\pi}{2} \\ 1, & \mbox{für } \bruch{\pi}{2}<|x|\le\pi \end{cases} [/mm]

(a) Skizzieren Sie die Funktion f auf dem Intervall [mm] [-2\pi, 2\pi] [/mm] und bestimmen Sie die Fourierreihe von f.

Guten Tag!

Also nachdem ich die Funktion skizziert habe, habe ich festgestellt, dass sie symmetrisch ist, also gerade und somit ist das [mm] b_n=0. [/mm]

Ich bin also wie folgt vorgegangen:

[mm] a_n=\bruch{2}{\pi}\integral_{0}^{\bruch{\pi}{2}}{2*cos(nx)dx}+\bruch{2}{\pi}\integral_{\bruch{\pi}{2}}^{\pi}{1*cos(nx)dx} [/mm]

Wegen der Symmetrie einfach von 0 bis [mm] \pi [/mm] mal 2 genommen =).

Das ergibt: [mm] a_n=\bruch{4}{n\pi}*sin(n*\bruch{\pi}{2})+\bruch{2}{n\pi}*sin(n*\pi)-\bruch{2}{n\pi}*sin(n*\bruch{\pi}{2}) [/mm]

Und das wiederum: [mm] \bruch{2}{n\pi}*sin(n*\bruch{\pi}{2}), [/mm] da [mm] \bruch{2}{n\pi}*sin(n*\pi)=0 [/mm] für jedes n.

Mein [mm] a_0=3 [/mm] und somit ist meine Fourierreihe von f:

[mm] h(x)=\bruch{3}{2}+\summe_{n=1}^{\infty}\bruch{2}{\pi*n}*sin(n*\bruch{\pi}{2})*cos(nx) [/mm]

Ich wollte mal fragen, ob das denn richtig sei?

Vielen Dank im Voraus,

Ilya

        
Bezug
Fourierreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Di 31.05.2011
Autor: MathePower

Hallo Random,

> Es sei f [mm]:\IR->\IR[/mm] gegeben durch die [mm]2\pi-periodische[/mm]
> Fortsetzung der Funktion [mm]g:[-\pi,\pi]->\IR[/mm] mit
>  
> g(x) [mm]=\begin{cases} 2, & \mbox{für } |x|\le\bruch{\pi}{2} \\ 1, & \mbox{für } \bruch{\pi}{2}<|x|\le\pi \end{cases}[/mm]
>  
> (a) Skizzieren Sie die Funktion f auf dem Intervall [mm][-2\pi, 2\pi][/mm]
> und bestimmen Sie die Fourierreihe von f.
>  Guten Tag!
>
> Also nachdem ich die Funktion skizziert habe, habe ich
> festgestellt, dass sie symmetrisch ist, also gerade und
> somit ist das [mm]b_n=0.[/mm]
>  
> Ich bin also wie folgt vorgegangen:
>
> [mm]a_n=\bruch{2}{\pi}\integral_{0}^{\bruch{\pi}{2}}{2*cos(nx)dx}+\bruch{2}{\pi}\integral_{\bruch{\pi}{2}}^{\pi}{1*cos(nx)dx}[/mm]
>  
> Wegen der Symmetrie einfach von 0 bis [mm]\pi[/mm] mal 2 genommen
> =).
>  
> Das ergibt:
> [mm]a_n=\bruch{4}{n\pi}*sin(n*\bruch{\pi}{2})+\bruch{2}{n\pi}*sin(n*\pi)-\bruch{2}{n\pi}*sin(n*\bruch{\pi}{2})[/mm]
>  
> Und das wiederum: [mm]\bruch{2}{n\pi}*sin(n*\bruch{\pi}{2}),[/mm] da
> [mm]\bruch{2}{n\pi}*sin(n*\pi)=0[/mm] für jedes n.
>  
> Mein [mm]a_0=3[/mm] und somit ist meine Fourierreihe von f:
>
> [mm]h(x)=\bruch{3}{2}+\summe_{n=1}^{\infty}\bruch{2}{\pi*n}*sin(n*\bruch{\pi}{2})*cos(nx)[/mm]
>  
> Ich wollte mal fragen, ob das denn richtig sei?


Ja, das ist richtig. [ok]


>  
> Vielen Dank im Voraus,
>  
> Ilya  


Gruss
MathePower

Bezug
                
Bezug
Fourierreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Mi 01.06.2011
Autor: Random

Aufgabe
Es sei f [mm] :\IR->\IR [/mm] gegeben durch die [mm] 2\pi-periodische [/mm] Fortsetzung der Funktion [mm] g:[-\pi,\pi]->\IR [/mm] mit

g(x) [mm] =\begin{cases} 2, & \mbox{für } |x|\le\bruch{\pi}{2} \\ 1, & \mbox{für } \bruch{\pi}{2}<|x|\le\pi \end{cases} [/mm]

(a) Skizzieren Sie die Funktion f auf dem Intervall [mm] [-2\pi, 2\pi] [/mm] und bestimmen Sie die Fourierreihe von f.
(b) Entscheiden Sie, für welche [mm] x\in\IR [/mm] die Fourierreihe von f konvergiert, und geben Sie die Grenzfunktion an.

[mm] h(x)=\bruch{3}{2}+\summe_{n=1}^{\infty}\bruch{2}{\pi\cdot{}n}\cdot{}sin(n\cdot{}\bruch{\pi}{2})\cdot{}cos(nx) [/mm]

Hallo,

Die (a) war ja recht schnell geklärt xD...

Ich weiss jedoch nicht wie ich bei der (b) vorgehen kann...

Ilya

Bezug
                        
Bezug
Fourierreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Mi 01.06.2011
Autor: fred97


> Es sei f [mm]:\IR->\IR[/mm] gegeben durch die [mm]2\pi-periodische[/mm]
> Fortsetzung der Funktion [mm]g:[-\pi,\pi]->\IR[/mm] mit
>  
> g(x) [mm]=\begin{cases} 2, & \mbox{für } |x|\le\bruch{\pi}{2} \\ 1, & \mbox{für } \bruch{\pi}{2}<|x|\le\pi \end{cases}[/mm]
>  
> (a) Skizzieren Sie die Funktion f auf dem Intervall [mm][-2\pi, 2\pi][/mm]
> und bestimmen Sie die Fourierreihe von f.
>  (b) Entscheiden Sie, für welche [mm]x\in\IR[/mm] die Fourierreihe
> von f konvergiert, und geben Sie die Grenzfunktion an.
>  
> [mm]h(x)=\bruch{3}{2}+\summe_{n=1}^{\infty}\bruch{2}{\pi\cdot{}n}\cdot{}sin(n\cdot{}\bruch{\pi}{2})\cdot{}cos(nx)[/mm]
>  
> Hallo,
>
> Die (a) war ja recht schnell geklärt xD...
>
> Ich weiss jedoch nicht wie ich bei der (b) vorgehen kann...

Dafür hattet Ihr sicher Sätze in der Vorlesung. Welche , kann ich nicht wissen. Tipp: Dirichlet-Kriterium

FRED

>
> Ilya


Bezug
                                
Bezug
Fourierreihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:35 Mi 01.06.2011
Autor: Random

Kann ich denn das Drichlet-Kriterium hier benutzen?

Also mein [mm] a_n [/mm] ist defenitiv monoton fallend und eine Nullfolge.

Wie zeige ich dass die Reihe mit [mm] b_n [/mm] eine beschränkte Folge bildet und was mache ich dann mit [mm] c_n? [/mm] xD

Ilya


Okay hab jetzt was gefunden, dass mich eigentlich weiterbringen sollte:

Die Funktion f muss [mm] 2\pi-periodisch [/mm] sein und stückweise glatte/stetig auf [a,b] sein... Dann konvergiert f.

Zitat: "Eine Funktion f : [a, b] → R heißt stückweise
stetig auf [a, b], wenn es eine Zerlegung [mm] {x_0, x_1, . . . , x_m} [/mm] von [a, b] mit
a = [mm] x_0 [/mm] < [mm] x_1 [/mm] < . . . < [mm] x_m=b [/mm] so gibt, dass f auf allen offenen Intervallen [mm] (x_{i-1}, x_i) [/mm]
mit i = 1, . . . ,m stetig ist und dass die linksseitigen Grenzwerte [mm] f(x_{i}-) [/mm] f¨ur alle
i = 1, . . . ,m und die rechtsseitigen Grenzwerte [mm] f(x_i+) [/mm] f¨ur alle i = 0, . . . ,m−1
existieren. [...]
Die Funktion
f : [a, b] → R heißt auf [a, b] stückweise glatt oder st¨uckweise stetig differenzierbar,
wenn ihre Ableitung stückweise stetig ist"

Verstehe ich das richtig? Ich muss f ableiten und das da oben erklärte bei der Ableitung nachprüfen? Wenn ja... Ich verstehe die Sache mit der Zerlegung nicht so ganz...

Vielen Dank im Voraus,

Ilya

Bezug
                                        
Bezug
Fourierreihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 03.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]