Folge von Homomorphismen exakt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:44 So 28.05.2006 | Autor: | neli |
Aufgabe | Eine Folge
(*) [mm]0 \overset{f_0}{\to} X_1 \overset{f_1}{\to} X_2 \rightarrow ... X_{n-1} \overset{f_{n-1}}{\to} X_n \overset{f_n}{\to} 0[/mm]
von Homomorphsimen ist genau dann exakt, wenn für i=1,....,n die induzierten Folgen
[mm]0 \rightarrow Bildf_{i-1} \overset{\alpha_i}{\to} X_i \overset{\beta_i}{\to} Bild f_i \rightarrow 0[/mm]
exakt sind. Dabei ist [mm] \alpha_i [/mm] die Inklusion und [mm] \beta_i(x) [/mm] = [mm] f_i(x) [/mm] für i=1,....,n |
Kann mit der Aufgabee nicht so übermäßig viel anfangen, weil ich noch nicht wirklich die Ahnung habe was Exaktheit bedeutet.
Habe mal nachgeschlagen, dass eine Folge genau dann exakt ist, wenn [mm] Kernf_i [/mm] = [mm] Bildf_{i-1} [/mm] ist.
Weiß aber nicht genau wie ich das auf die induzierten Folgen anwenden soll. Muss ich da dann zeigen, dass wenn [mm] Kern\betha_i [/mm] = [mm] Bild\alpha_i \forall [/mm] i gilt dann auch [mm] Kernf_i [/mm] = [mm] Bildf_{i-1} [/mm] ist?
also Kern [mm] \beta_i [/mm] müsste doch gleich [mm] Kernf_i [/mm] sein oder nicht? weil die machen ja das gleiche.
und ist [mm] Bildf_{i-1} [/mm] nicht auch [mm] Bild\alpha_i [/mm] ? [mm] \alpha_i [/mm] fasst doch eigentlich nur [mm] Bildf_{i-1} [/mm] also Teilmenge von [mm] X_i [/mm] auf oder nicht?
würde mich freuen wenn mir da jemand etwas mehr Klarheit verschaffen könnte
danke im Vorraus
Ich habe diese Frage in keinem anderen Forum gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:21 So 28.05.2006 | Autor: | felixf |
Hallo neli!
> Eine Folge
> (*) [mm]0 \overset{f_0}{\to} X_1 \overset{f_1}{\to} X_2 \rightarrow ... X_{n-1} \overset{f_{n-1}}{\to} X_n \overset{f_n}{\to} 0[/mm]
>
> von Homomorphsimen ist genau dann exakt, wenn für
> i=1,....,n die induzierten Folgen
> [mm]0 \rightarrow Bildf_{i-1} \overset{\alpha_i}{\to} X_i \overset{\beta_i}{\to} Bild f_i \rightarrow 0[/mm]
>
> exakt sind. Dabei ist [mm]\alpha_i[/mm] die Inklusion und [mm]\beta_i(x)[/mm]
> = [mm]f_i(x)[/mm] für i=1,....,n
> Kann mit der Aufgabee nicht so übermäßig viel anfangen,
> weil ich noch nicht wirklich die Ahnung habe was Exaktheit
> bedeutet.
> Habe mal nachgeschlagen, dass eine Folge genau dann exakt
> ist, wenn [mm]Kernf_i[/mm] = [mm]Bildf_{i-1}[/mm] ist.
Genau das ist Exaktheit
Anschaulich kann man sich unter exakten Sequenzen nicht viel vorstellen; sie sind meistens ein Hilfsmittel um etwas auszurechnen oder etwas zu beweisen...
> Weiß aber nicht genau wie ich das auf die induzierten
> Folgen anwenden soll. Muss ich da dann zeigen, dass wenn
> [mm]Kern\beta_i[/mm] = [mm]Bild\alpha_i \forall[/mm] i gilt dann auch
> [mm]Kern f_i[/mm] = [mm]Bild f_{i-1}[/mm] ist?
....und umgekehrt. Genau.
> also Kern [mm]\beta_i[/mm] müsste doch gleich [mm]Kernf_i[/mm] sein oder
> nicht? weil die machen ja das gleiche.
Genau.
> und ist [mm]Bildf_{i-1}[/mm] nicht auch [mm]Bild\alpha_i[/mm] ? [mm]\alpha_i[/mm]
> fasst doch eigentlich nur [mm]Bildf_{i-1}[/mm] also Teilmenge von
> [mm]X_i[/mm] auf oder nicht?
Genau.
> würde mich freuen wenn mir da jemand etwas mehr Klarheit
> verschaffen könnte
Du hast die Aufgabe eigentlich schon geloest Du musst nur noch zeigen, dass der Rest der induzierten kurzen exakten Sequenz (so nennt man die Teile) auch exakt ist. Aber fuer [mm] $\alpha_i$ [/mm] heisst die Exaktheit bei $Bild [mm] f_{i-1}$ [/mm] gerade, dass [mm] $\alpha_i$ [/mm] injektiv sein muss. Und das ist es immer (da Inklusionsabbildung). Und fuer [mm] $\beta_i$ [/mm] heisst die Exaktheit bei $Bild [mm] f_i$ [/mm] gerade, dass [mm] $\beta_i$ [/mm] surjektiv sein muss. Aber das ist es per Definition auch. Insofern ist die induzierte Sequenz genau dann exakt, wenn $Kern [mm] \beta_i [/mm] = Bild [mm] \alpha_i$ [/mm] ist.
Und dies gilt genau dann fuer alle $i$, wenn die Sequenz [mm] ($\ast$) [/mm] exakt ist -- wie du schon geschrieben hast!
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:58 So 28.05.2006 | Autor: | neli |
das hört man doch mal gerne
danke schön
|
|
|
|