Fläche von Kreis mit Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:34 So 12.12.2010 | Autor: | Pille456 |
Hi!
Bei einer E-Technik Aufgabe musste ich gerade ein Flächenintegral eines Kreises lösen, aber irgendwie kam ich dabei auf das falsche Ergebnis und wundere mich gerade, wo der Fehler liegt:
Mein Ansatz sah so aus: Der Kreis hat den Radius r und Winkel [mm] \phi [/mm] in Polarkoordinaten, daher für die Fläche:
[mm] \integral_{0}^{2\pi}{\integral_{0}^{r}{1}drd\phi} [/mm] = [mm] \integral_{0}^{2\pi}{r*d\phi} [/mm] = [mm] 2*r*\pi [/mm]
Das wäre aber der Umfang des Kreises! Was lief da falsch?
P.S. Ich muss gestehen ich bin nicht sehr fit im Lösen von 2 und 3 dimensionalen Integralen, weil ich es sowohl in der Schule, als auch in der Vorlesung nie wirklich gemacht habe und das meiste eher durch Wikipedia / sonstige I.net Seiten mir angelesen habe.
Daher seit umsichtig mit mir ;)
Gruß
Pille
|
|
|
|
Hallo Pille456,
> Hi!
>
> Bei einer E-Technik Aufgabe musste ich gerade ein
> Flächenintegral eines Kreises lösen, aber irgendwie kam
> ich dabei auf das falsche Ergebnis und wundere mich gerade,
> wo der Fehler liegt:
>
> Mein Ansatz sah so aus: Der Kreis hat den Radius r und
> Winkel [mm]\phi[/mm] in Polarkoordinaten, daher für die Fläche:
> [mm]\integral_{0}^{2\pi}{\integral_{0}^{r}{1}drd\phi}[/mm] =
> [mm]\integral_{0}^{2\pi}{r*d\phi}[/mm] = [mm]2*r*\pi[/mm]
> Das wäre aber der Umfang des Kreises! Was lief da falsch?
>
Nun, da hast Du die Funktionaldeterminante der Parametertransfoormation
[mm]x=r*\cos\left(\phi)[/mm]
[mm]y=r*\sin\left(\phi)[/mm]
Diese ergibt sich zu:
[mm]\vmat{\begin{matrix} \bruch{\partial x}{\partial r} & \bruch{\partial x}{\partial \phi} \\ \bruch{\partial y}{\partial r} & \bruch{\partial y}{\partial \phi} \end{matrix}}=\vmat{\begin{matrix} \cos\left(\phi\right) & -r*\sin\left(\phi\right) \\ \sin\left(\phi\right) & r*\cos\left(\phi\right) \end{matrix}}=r[/mm]
Demnach lautet das zu berechnende Integral:
[mm]\integral_{0}^{2\pi}{\integral_{0}^{r}{\blue{r}}drd\phi}[/mm]
>
> P.S. Ich muss gestehen ich bin nicht sehr fit im Lösen von
> 2 und 3 dimensionalen Integralen, weil ich es sowohl in der
> Schule, als auch in der Vorlesung nie wirklich gemacht habe
> und das meiste eher durch Wikipedia / sonstige I.net Seiten
> mir angelesen habe.
> Daher seit umsichtig mit mir ;)
>
> Gruß
> Pille
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:01 So 12.12.2010 | Autor: | Pille456 |
Hi, danke für Deine Hilfe, aber das weiß ich dank Wikipedia auch.
Das Problem ist, dass ich absolut keine Ahnung habe, wie man darauf kommt. Also $ [mm] \vmat{\begin{matrix} \bruch{\partial x}{\partial r} & \bruch{\partial x}{\partial \phi} \\ \bruch{\partial y}{\partial r} & \bruch{\partial y}{\partial \phi} \end{matrix}}=\vmat{\begin{matrix} \cos\left(\phi\right) & -r\cdot{}\sin\left(\phi\right) \\ \sin\left(\phi\right) & r\cdot{}\cos\left(\phi\right) \end{matrix}}=r [/mm] $ sieht mir irgendwie nach differenzieren im mehrdimensionalen aus, aber wieso man das jetzt hier genau gerade so machen soll weiß ich nicht.
Ich bin schlichtweg von dem "Standardansatz" für das 3 Dimensionale ausgegangen, da macht man ja auch immer soetwas wie:
[mm] \integral_{}^{}{\integral_{}^{}{}\integral_{}^{}{f(x,y,z)dxdydz}} [/mm] und setzt dann f(x,y,z) = 1 und muss nur die entsprechenden Grenzen vernünftig wählen.
|
|
|
|
|
> Hi, danke für Deine Hilfe, aber das weiß ich dank
> Wikipedia auch.
>
> Das Problem ist, dass ich absolut keine Ahnung habe, wie
> man darauf kommt. Also [mm]\vmat{\begin{matrix} \bruch{\partial x}{\partial r} & \bruch{\partial x}{\partial \phi} \\ \bruch{\partial y}{\partial r} & \bruch{\partial y}{\partial \phi} \end{matrix}}=\vmat{\begin{matrix} \cos\left(\phi\right) & -r\cdot{}\sin\left(\phi\right) \\ \sin\left(\phi\right) & r\cdot{}\cos\left(\phi\right) \end{matrix}}=r[/mm]
> sieht mir irgendwie nach differenzieren im
> mehrdimensionalen aus, aber wieso man das jetzt hier genau
> gerade so machen soll weiß ich nicht.
> Ich bin schlichtweg von dem "Standardansatz" für das 3
> Dimensionale ausgegangen, da macht man ja auch immer
> soetwas wie:
>
> [mm]\integral_{}^{}{\integral_{}^{}{}\integral_{}^{}{f(x,y,z)dxdydz}}[/mm]
> und setzt dann f(x,y,z) = 1 und muss nur die entsprechenden
> Grenzen vernünftig wählen.
ein flächenelement in kartesischen koordinaten ist dA=dx*dy, im kartesischen jedoch [mm] dA=r*dr*d\phi
[/mm]
das kann man zeichnerisch schnell sehen
genauer nachzulesen hier:
http://tp1.uni-duesseldorf.de/~pukhov/Lectures/MMP/Theme%2012.%20mehrfachintegrale.pdf s.6
gruß tee
|
|
|
|