www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Fixpunktgleichung
Fixpunktgleichung < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Do 17.05.2012
Autor: unibasel

Aufgabe
Gesucht sind die Nullstellen der Funktion F(x) = 2x-cos(x). Zeige grafisch, dass F auf dem Intervall (0,1) genau eine Nullstelle x* hat. Gebe zwei verschiedene Fixpunktgleichungen [mm] x=\phi_{i}(x),i=1,2, [/mm] an, die von x* erfüllt werden. Prüfe experimentiell für geeignete Startwerte [mm] x_{0}, [/mm] ob die Fixpunktiterationen [mm] x_{n+1}=\phi_{i}(x_{n}) [/mm] gegen das gesuchte x* konvergieren. Begründe im Falle der Konvergenz den experimentiellen Befund.

Nun ich habe die Funktion mal grafisch dargestellt:
F(x) = 2*x-cos(x)

Im Intervall (0,1) besitzt diese genau eine Nullstelle x*.

Nun wie bestimme ich jetzt die Fixpunktgleichungen? Und wie kann ich dies dann prüfen?

Ich verstehe das Skript dazu nicht genau.

Wäre für Hilfe dankbar.
mfg :)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Fixpunktgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Do 17.05.2012
Autor: fred97

Fixpunktgleichungen wären z.B.:

cos(x)-x=x

oder [mm] \bruch{cos(x)}{2}=x [/mm]

FRED

Bezug
                
Bezug
Fixpunktgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Do 17.05.2012
Autor: unibasel

Haha danke, das war ja ziemlich trivial.

Jetzt nehme ich also einen Startwert [mm] x_{0}, [/mm] also z.b für die erste Nullstelle und setze dies in die Fixpunktgleichungen ein?

Und was ist dann mit der zweiten Nullstelle?

Hmm... bin ziemlich verwirrt.
lg


Bezug
                        
Bezug
Fixpunktgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Do 17.05.2012
Autor: Diophant

Hallo,

> Haha danke, das war ja ziemlich trivial.
>
> Jetzt nehme ich also einen Startwert [mm]x_{0},[/mm] also z.b für
> die erste Nullstelle und setze dies in die
> Fixpunktgleichungen ein?
>
> Und was ist dann mit der zweiten Nullstelle?
>
> Hmm... bin ziemlich verwirrt.

[mm] x_{n+1}=cos(x_n)-x_n [/mm]

für Variante 1...


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]