www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Fixpunkte bestimmen, mehrdim
Fixpunkte bestimmen, mehrdim < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkte bestimmen, mehrdim: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 So 09.02.2014
Autor: fabian1991

Aufgabe
Untersuchen Sie die Abbildung auf Fixpunkte und bestimmen Sie diese. Geben Sie zu jedem Fixpunkt an, ob lokale Konvergenz vorliegt und welche Konvergenzordnung erreicht wird:
[mm] \phi(x1, x2)=0.25x_{1}^2 [/mm] - [mm] 0.5x_{1} [/mm] +1.25
[mm] \phi(x1, x2)=0.1875x_{1}+0.5x_{2}^2+0.25 x_{1}x_{2}+0.125x_{1}+1.75x_{2}-0.3125 [/mm]

Hi,
ehrlich gesagt habe ich absolut keinen Ansatz. Wäre das Problem eindimensional, so würde ich es mit x gleichsetzen und nach x umstellen, den daraus resultierenden Fixpunkt dann in die 1., 2., ... Ableitung einsetzen, um Konvergenz zu bestimmen.
Aber wie muss ich hier vorgehen?
Beste Grüße

        
Bezug
Fixpunkte bestimmen, mehrdim: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 09.02.2014
Autor: fred97


> Untersuchen Sie die Abbildung auf Fixpunkte und bestimmen
> Sie diese. Geben Sie zu jedem Fixpunkt an, ob lokale
> Konvergenz vorliegt und welche Konvergenzordnung erreicht
> wird:
>  [mm]\phi(x1, x2)=0.25x_{1}^2[/mm] - [mm]0.5x_{1}[/mm] +1.25
>  [mm]\phi(x1, x2)=0.1875x_{1}+0.5x_{2}^2+0.25 x_{1}x_{2}+0.125x_{1}+1.75x_{2}-0.3125[/mm]
>  
> Hi,
>  ehrlich gesagt habe ich absolut keinen Ansatz. Wäre das
> Problem eindimensional, so würde ich es mit x gleichsetzen
> und nach x umstellen, den daraus resultierenden Fixpunkt
> dann in die 1., 2., ... Ableitung einsetzen, um Konvergenz
> zu bestimmen.
>  Aber wie muss ich hier vorgehen?
>  Beste Grüße


Kann es sein, dass da steht


$ [mm] \phi_1(x_1, x_2)=0.25x_{1}^2 [/mm] $ - $ [mm] 0.5x_{1} [/mm] $ +1.25
$ [mm] \phi_2(x_1, x_2)=0.1875x_{1}+0.5x_{2}^2+0.25 x_{1}x_{2}+0.125x_{1}+1.75x_{2}-0.3125 [/mm] $

?

Wenn ja, sollst Du möglicherweise [mm] x_1 [/mm] und [mm] x_2 [/mm] so bestimmen, dass

  [mm] \phi_1(x_1, x_2)=x_1 [/mm]  und  [mm] \phi_2(x_1, x_2)=x_2. [/mm]


Zu bestimmen sind dann Fixpunkte der Abb. [mm] \phi=(\phi_1,\phi_2) [/mm]

FRED

Bezug
                
Bezug
Fixpunkte bestimmen, mehrdim: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 So 09.02.2014
Autor: fabian1991

Ja genau, das habe ich übersehen.
also setze ich die erste gleichung = [mm] x_{1} [/mm] und die zweite Gleichung = [mm] x_{2} [/mm] und kann es dann mit dem Newtonverfahren lösen?
quasi
[mm] 0=0.25x_{1}^2 [/mm] - [mm] 0.5x_{1}-1.25 -x_{1} [/mm]
[mm] 0=0.1875x_{1}+0.5x_{2}^2+0.25 x_{1}x_{2}+0.125x_{1}+1.75x_{2}-0.3125 [/mm] - [mm] x_{2} [/mm]

Bezug
                        
Bezug
Fixpunkte bestimmen, mehrdim: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Mo 10.02.2014
Autor: Gonozal_IX

Hiho,

>  also setze ich die erste gleichung = [mm]x_{1}[/mm] und die zweite
> Gleichung = [mm]x_{2}[/mm] und kann es dann mit dem Newtonverfahren lösen?
>  quasi

das "quasi" trifft es ganz gut. So wie die Aufgabe gestellt ist, sollst du ALLE Fixpunkte finden. Da wird das Newton-Verfahren allein dir wohl nicht weiterhelfen ohne weitere Arbeit reinzustecken.

Kennst du denn andere Verfahren?

Es geht hier augenscheinlich wesentlich einfacher.... schau dir mal die erste Fixpunktgleichung an, was fällt dir auf?

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]