www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Feuerzeug
Feuerzeug < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Feuerzeug: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Mi 15.12.2010
Autor: kushkush

Aufgabe
In einem pneumatischen Feuerzeug wird das Volumen von Luft sehr rasch auf ein Zehntel verkleinert. Wie hoch steigt die Lufttemperatur?

Annahme: Adiabatische Kompression eines idealen Gases

[mm] $T_{Anfang}=20°C$, C_{p}/C_{V}=1.4 [/mm]

Hallo!


Es gilt: $ [mm] T_{1}V_{1}^{(C_{p}/C_{V})-1}= T_{2}\cdot 0.1V_{1}^{(C_{p}/C_{V})-1} [/mm] $

Also [mm] $T_{2}=T_{1}\cdot 100=293\cdot [/mm] 100 = 2930 K $


Ist der Rechenweg richtig?


Ich habe diese Frage in keinem anderen Forum gestellt und danke für jeden Hinweis.


Gruss

kushkush

        
Bezug
Feuerzeug: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Mi 15.12.2010
Autor: wattwurm83

Also deine Gleichung ist richtig...

[mm] \kappa = \bruch{C_{P}}{C_{V}}[/mm]  das Zeichen ist Kappa, der adiabatenexponent

auch das stimt für die adiabatische Kompresion...

1. Poisson-Gleichung: [mm] T_{1}*V_{1}^{\kappa - 1} = T_{2}*V_{2}^{\kappa - 1} [/mm]

Allerdings glaubst du echt, dass die Temperatur auf über 3000°C steigt? Das wäre ja besser als jeder Ottomotor *lach*

ich denke du hast einen Fehler in der Kürzung der Parameter drinne, also bezüglich der Potenzgesetze.

Denn: [mm] \bruch{V_{1}^{\kappa - 1}}{(0,1*V_{1})^{\kappa - 1}} \not= 10 [/mm]

es gilt: [mm] \bruch{a^{n}}{b^{n}} = \{\bruch{a}{b}\}^{n} [/mm]


gegeben ist:
[mm] V_{2} = 0,1 * V_{1} [/mm] und obige Gleichung für die adiabatische Kompression...

eingesetzt und umgestellt ergibt das:

[mm] T_{2} = T_{1} * \bruch{V_{1}^{\kappa - 1}}{(0,1*V_{1})^{\kappa - 1}} = T_{1} * \{ \bruch{V_{1}}{0,1*V_{1}}\}^{\kappa-1} = T_{1} * 10^{\kappa-1} [/mm]

Und dann kommst du auch auf ein brauchbares Ergebnis von
[mm] T_{2} = 735,98 K \approx[/mm] 463°C

MfG

Bezug
                
Bezug
Feuerzeug: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Mi 15.12.2010
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo wattwurm,


meinst du nicht


$({0.1V_{1})^{\kappa -1}T_{2}=T_{1}V_{1}^{\kappa-1} $ ?



Danke!!!

Gruss

kushkush

Bezug
                        
Bezug
Feuerzeug: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mi 15.12.2010
Autor: wattwurm83

natürlich...
hast ja recht...

habe es auch schon korrigiert...

MfG

Bezug
                                
Bezug
Feuerzeug: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Mi 15.12.2010
Autor: kushkush

Nochmal: Danke!




Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]