Faltung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:43 Di 13.11.2007 | Autor: | asudau |
Aufgabe | Sind f, g : [mm] R^{n} \to [/mm] messbar, so auch die Funktion
[mm] R^{n} \times R^{n} \mapsto [/mm] C : (x, y) [mm] \mapsto [/mm] f(y)g(x-y), da sie als Produkt der meßbaren Funktionen (x, y) [mm] \mapsto [/mm] f(y) und g [mm] \circ \Delta [/mm] mit der (sogar stetigen) Differenzabbildung [mm] \Delta [/mm] : [mm] R^{n} \times R^{n} \mapsto R^{n} [/mm] : [mm] \Delta [/mm] (x, y) = x-y definiert ist. Damit ist die Menge
[mm] N_{f,g} [/mm] := { x [mm] \in R^{n} [/mm] : [mm] \integral{dy|f(y)||g(x-y)|} [/mm] = [mm] \infty [/mm] }
Borel-meßbar und wir erhalten die meßbare Funktion
f [mm] \* [/mm] g : [mm] R^{n} \to [/mm] C : (f [mm] \* [/mm] g)(x) [mm] =\begin{cases} \integral{dy f(y)g(x-y)}, & x \not\in N_{f,g} \\ 0, & x \in N_{f,g} \end{cases}
[/mm]
das Faltungsprodukt von f und g |
Leider verstehe ich die Beweise zu einigen Eigenschaften des Faltungsprodukts nicht
i) [mm] N_{f,g} [/mm] = [mm] N_{g,f} [/mm] und f [mm] \* [/mm] g = g [mm] \* [/mm] f (Wegen Translationsinvarianz)
Da komm ich noch mit
ii) {f [mm] \* [/mm] g [mm] \not= [/mm] 0} [mm] \subset [/mm] {f [mm] \not= [/mm] 0} + {g [mm] \not= [/mm] 0}
Denn: für x [mm] \not\in [/mm] {f [mm] \not= [/mm] 0} + {g [mm] \not= [/mm] 0} ist bei beliebigem y [mm] \in R^{n} [/mm] wegen x=y+(x-y) stets f(y)g(x-y) = 0, somit (f [mm] \* [/mm] g)(x) = 0
Also "x [mm] \not\in [/mm] {f [mm] \not= [/mm] 0} + {g [mm] \not= [/mm] 0}" verstehe ich jetzt mal so dass x nur werte annimmt für die g(x) und f(x) nicht beide ungleich 0 sind??
aber wieso gilt dann " wegen x=y+(x-y) stets f(y)g(x-y) = 0"
iii) f und g integrierbar [mm] \Rightarrow \lambda(N_{f,g}) [/mm] = 0 und...
den Rest las ich erstmal weg mir macht schon der Ausdruck [mm] \lambda(N_{f,g}) [/mm] Probleme mir ist bisher nicht klar was genau damit gemeint ist weil ich diese Schreibweise bisher in keinem anderen Buch gefunden hab ich vermute allerdings dass es was relativ triviales ist...
würde mich über Hilfe freuen!
|
|
|
|
Hi,
ich wuerde die schreibweise von addierten mengen so verstehen
[mm] $X+Y:=\{z|\exists x\in X,y\in Y: z=x+y\}$
[/mm]
in deinem fall heisst das
[mm] $x\not\in \ldots+\ldots \gdw \forall [/mm] y,z: [mm] x=y+z\Rightarrow [/mm] f(y)=0 [mm] \vee [/mm] g(z)=0$
das ist eigentlich nur ein wenig hantieren mit logischen operatoren. wenn du das so siehst, steht die folgerung, die du nicht verstehst, schon fast da.
ja, und [mm] $\lambda(X)$ [/mm] bedeutet vermutlich das lebesgue-mass der menge $X$ oder?
gruss
matthias
|
|
|
|