www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte mit Nebenbedingung
Extremwerte mit Nebenbedingung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte mit Nebenbedingung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 22.06.2018
Autor: schokoschnecke

Aufgabe
Mit Hilfe der Multiplikatorenregel von Lagrange bestimme man alle Punkte
der Ellipse [mm]5x^2+5y^2-8xy = 18 [/mm] in denen die Funktion [mm] z = x^2 + y^2[/mm] das Minimum bzw. Maximum annimmt! Wir sollen nur die potentiellen Extrempunkte finden und nicht prüfen, ob es Maximum/Minimum oder doch gar nichts von beidem ist (wurde in der Übung so gesagt).

Hallo,
ich habe die oben genannte Aufgabe gerechnet, aber meine Lösung scheint mir falsch zu sein, da ich beide Funktionen geplottet habe und die Ellipse gar nicht durch den berechneten Punkt (0,0) gehen soll. Das ist mein Rechenweg:

[mm] H(x,y) = f(x,y) + \lamba g(x,y) [/mm]

Mein Gleichungssystem sieht so aus:
1. [mm]\frac{\partial H}{\partial x} (x,y) = 10x-8y+2\lambda x = 0 [/mm]
2. [mm]\frac{\partial H}{\partial y} (x,y) = 10y-8x+2\lambda y = 0 [/mm]
3. [mm]\frac{\partial H}{\partial \lambda} (x,y) = x^2+y^2 = 0 [/mm]

Gleichung 1. habe ich nach x umgestellt:
[mm] x = \frac{8y}{10+2\lambda}[/mm]

Dann habe ich x in Gleichung 2 eingesetzt:
[mm] 0 = 10y - \frac{64y}{10+2\lambda}+2\lambda y[/mm]

Ich habe durch y dividiert, mit [mm](10+2\lambda)[/mm] multipliziert und nach [mm]\lambda[/mm] aufgelöst (mithilfe der pq-Formel):
[mm]0 = \lambda^2 +10\lambda +9 [/mm]
[mm] \lambda_{1,2} = -5 \pm 4[/mm]
[mm] \lambda_1 = -1, \lambda_2 = -9[/mm]

Zum Schluss habe ich x und [mm] \lambda[/mm] in Gleichung 3. eingesetzt und erhalte den Punkt (0,0). Kann mir jemand sagen, wo mein Fehler liegt?

Viele Grüße
schokoschnecke :)



        
Bezug
Extremwerte mit Nebenbedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 Fr 22.06.2018
Autor: Fulla

Hallo schokoschnecke,

> [mm]0 = \lambda^2 +10\lambda +9[/mm]
> [mm]\lambda_{1,2} = -5 \pm 4[/mm]

>

> [mm]\lambda_1 = -1, \lambda_2 = -9[/mm]

rechne das nochmal nach.

EDIT: Sorry, mein Fehler. ICH habe mich verrechnet! Danke, Gono, für den Hinweis.

Lieben Gruß,
Fulla

Bezug
                
Bezug
Extremwerte mit Nebenbedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Fr 22.06.2018
Autor: Gonozal_IX

Hiho,

> Hallo schokoschnecke,
>  
> > [mm]0 = \lambda^2 +10\lambda +9[/mm]
>  > [mm]\lambda_{1,2} = -5 \pm \red{4}[/mm]

>  
> >
>  > [mm]\lambda_1 = -1, \lambda_2 = -9[/mm]

>  
> rechne das nochmal nach.

also nachrechnen ist immer gut… aber einen Fehler sehe ich da nicht.

Gruß
Gono.

Bezug
        
Bezug
Extremwerte mit Nebenbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Fr 22.06.2018
Autor: HJKweseleit

Gleichung 3 ist falsch: Du leitest nach [mm] \lambda [/mm] ab, dann gelten x und y als konstant, und deren Ableitung ist 0.

Somit heißt Gleichung 3 nur: 0+0=0.

Du musst die [mm] \lambda [/mm] Werte -1 und -9 in 1. und 2. einsetzen. Dann hast du jeweils nur noch 2 Gleichungen mit 2 Unbekannten, die du lösen kannst.

Bezug
                
Bezug
Extremwerte mit Nebenbedingung: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 11:02 Sa 23.06.2018
Autor: Gonozal_IX

Hiho,

> Gleichung 3 ist falsch: Du leitest nach [mm]\lambda[/mm] ab, dann
> gelten x und y als konstant, und deren Ableitung ist 0.

nein. schaue dir die anderen Ableitungen an.
Es wird $ H(x,y) = f(x,y) + [mm] \lambda [/mm] g(x,y) $  abgeleitet, in der Ursprungsfrage wird das [mm] $\lambda$ [/mm] wegen eines Tippfehlers nur nicht angezeigt.

Damit ist [mm] $\frac{\partial H}{\partial \lambda} [/mm] = g$

Gruß,
Gono


Bezug
        
Bezug
Extremwerte mit Nebenbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Fr 22.06.2018
Autor: fred97

Gesucht sind doch Min. und Max. der Funktion [mm] f(x,y)=x^2+y^2 [/mm] unter der Nebenbedingung g [mm] (x,y)=5x^2+5y^2-8xy [/mm] -18=0.

Du hast f und  g vertauscht. !


Bezug
                
Bezug
Extremwerte mit Nebenbedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Fr 22.06.2018
Autor: schokoschnecke

Ohh, danke, ich Esel! :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]