www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte bestimmen
Extremwerte bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Di 06.07.2010
Autor: dynaDE

Aufgabe
Alle extremwerte der Funktion z = f(x,y) = [mm] x^3 [/mm] + [mm] y^2 [/mm] + 2xy - [mm] 3x^2 [/mm] -137 bestimmen.

Hallo, ich habe einige Probleme in der Vorgehensweise.

Als erstes würde ich partiell ableiten.

[mm] \bruch{\partial f}{\partial x} [/mm] = [mm] 3x^2 [/mm] + 2y - 6x

und

[mm] \bruch{\partial f}{\partial y} [/mm] =  2y + 2x

Für Extremwerte gelten ja folgende Bedingungen.

[mm] f_x(x_0,y_0) [/mm] = 0
[mm] f_y(x_0,y_0) [/mm] = 0

Sowie die hinreichende Bedingung:
[mm] \nabla [/mm] = [mm] f_x_x(x_0,y_0) [/mm] * [mm] f_y_y(x_0,y_0) [/mm] - [mm] f^2_x_y(x_0,y_0) [/mm] > 0


Was muss ich nun machen?

Vielen Dank schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Extremwerte bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Di 06.07.2010
Autor: schachuzipus

Hallo dynaDE,

> Alle extremwerte der Funktion z = f(x,y) = [mm]x^3[/mm] + [mm]y^2[/mm] + 2xy
> - [mm]3x^2[/mm] -137 bestimmen.
>  Hallo, ich habe einige Probleme in der Vorgehensweise.
>  
> Als erstes würde ich partiell ableiten.

Ja!

>  
> [mm]\bruch{\partial f}{\partial x}[/mm] = [mm]3x^2[/mm] + 2y - 6x [ok]
>
> und
>  
> [mm]\bruch{\partial f}{\partial y}[/mm] =  2y + 2x [ok]
>
> Für Extremwerte gelten ja folgende Bedingungen.
>  
> [mm]f_x(x_0,y_0)[/mm] = 0
> [mm]f_y(x_0,y_0)[/mm] = 0 [ok]
>
> Sowie die hinreichende Bedingung:
>  [mm]\nabla[/mm] = [mm]f_x_x(x_0,y_0)[/mm] * [mm]f_y_y(x_0,y_0)[/mm] -
> [mm]f^2_x_y(x_0,y_0)[/mm] > 0
>
>
> Was muss ich nun machen?

Löse erstmal das Gleichungssystem mit den partiellen Ableitungen, das liefert dir die sog. stationären Punkte, an denen Extrema vorliegen können.

Dazu schreibe die zweite Gleichung mal als $2(x+y)=0$, also $x=-y$

Damit in die andere und du bekommst zwei stationäre Punkte

[mm] $(x_1,y_1), (x_2,y_2)$ [/mm]

Dann stelle die Hessematrix auf und werte diese an den stat. Punkten aus.

Das gibt dir Aufschluss, ob ein Extremum vorliegt und wenn ja, welcher Art es ist.

Dazu musst du die Hessematrix auf Definitheit untersuchen.

Gruß

schachuzipus

>  
> Vielen Dank schonmal!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]