www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte Berechnen
Extremwerte Berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Mo 11.01.2010
Autor: LowBob

Aufgabe 1
Für welche Punkte P=(x;y;z), die Auf der Kugel vom Radius [mm] R_{K}=1 [/mm] um den Ursprung und auf der Zylinderfläche vom Radius [mm] R_{Z}=\wurzel{\bruch{1}{2}} [/mm] mit der z-Achse als Mittellinie liegen, ist die Summe ihrer Koordinaten am größten.

Lösung: [mm] P(\bruch{1}{2};\bruch{1}{2};\wurzel{\bruch{1}{2}}) [/mm]

Aufgabe 2
Welche Extremwerte und Extremstellen hat die folgende Funktion: [mm] z=\sin(x)+\sin(y)+\sin(x+y); [/mm] x,y [mm] \in [0,\bruch{\pi}{2}] [/mm]

Lösung: [mm] P=(\bruch{\pi}{3};\bruch{\pi}{3};\bruch{3}{2}\wurzel{3}) [/mm]


Hallo zusammen,

Aufgabe 1.

Ich habe leider keine Idee. Kann mir bitte jemand den Ansatz verraten?

Aufgabe 2.

Ich dachte, dass ich zunächst die ersten partiellen Ableitungen bilde und die gleich Null setze um x und y auszurechnen.

So habe ich für:

[mm] z_{x}=\cos(x)+\cos(x+y) [/mm]

[mm] z_{y}=\cos(y)+\cos(x+y) [/mm]

Setze ich nun z.B. [mm] z_{x}=0 [/mm] und löse nach y auf, bekomme ich [mm] y=\bruch{\pi}{2}-2x [/mm]

und wenn ich das nun in [mm] z_{y}=0 [/mm] einsetze bekomme ich [mm] x=\bruch{\pi}{6} [/mm] und das ist ja laut Lösung falsch.

Kann mir da jemand weiterhelfen?



MFG

        
Bezug
Extremwerte Berechnen: Aufgabe 1)
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 11.01.2010
Autor: MathePower

Hallo LowBob,

> Für welche Punkte P=(x;y;z), die Auf der Kugel vom Radius
> [mm]R_{K}=1[/mm] um den Ursprung und auf der Zylinderfläche vom
> Radius [mm]R_{Z}=\wurzel{\bruch{1}{2}}[/mm] mit der z-Achse als
> Mittellinie liegen, ist die Summe ihrer Koordinaten am
> größten.
>  
> Lösung:
> [mm]P(\bruch{1}{2};\bruch{1}{2};\wurzel{\bruch{1}{2}})[/mm]
>  Welche Extremwerte und Extremstellen hat die folgende
> Funktion: [mm]z=\sin(x)+\sin(y)+\sin(x+y);[/mm] x,y [mm]\in [0,\bruch{\pi}{2}][/mm]
>  
> Lösung:
> [mm]P=(\bruch{\pi}{3};\bruch{\pi}{3};\bruch{3}{2}\wurzel{3})[/mm]
>  Ermitteln Sie die Ableitung und Steigung der Funktion
> [mm]z=cos(e^{x})+sin(e^{y})[/mm] für [mm]x=y=ln(\pi)[/mm] in Richtung der
> Geraden die parallel zur Geraden [mm]y=3x[/mm] verläuft.
>  
> Lösung: [mm]F'(t)=3\pi[/mm] ; [mm]tan(\alpha)=-2,98[/mm]
> Hallo zusammen,
>  
> Aufgabe 1.
>  
> Ich habe leider keine Idee. Kann mir bitte jemand den
> Ansatz verraten?


Hier betrachtet man die Funktion [mm]f\left(x,y,z)=x+y+z[/mm]
unter den Nebenbedingungen

[mm]g_{1}\left(x,y,z)=x^{2}+y^{2}+z^{2}-R^{2}_{K}[/mm]

[mm]g_{2}\left(x,y,z)=x^{2}+y^{2}-R^{2}_{Z}[/mm]

Damit ist die Lagrangefunktion

[mm]L\left(x,y,z,\lambda,\mu\right)=f\left(x,y,z\right)-\lambda*g_{1}\left(x,y,z\right)-\mu*g_{2}\left(x,y,z\right)[/mm]

auf Extremwerte zu untersuchen.

Demnach ist das Gleichungssystem

[mm]\bruch{\partial}{\partial x}L\left(x,y,z,\lambda,\mu\right)=0[/mm]

[mm]\bruch{\partial}{\partial y}L\left(x,y,z,\lambda,\mu\right)=0[/mm]

[mm]\bruch{\partial}{\partial z}L\left(x,y,z,\lambda,\mu\right)=0[/mm]

[mm]\bruch{\partial}{\partial \lambda}L\left(x,y,z,\lambda,\mu\right)=0[/mm]

[mm]\bruch{\partial}{\partial \mu}L\left(x,y,z,\lambda,\mu\right)=0[/mm]

zu lösen.


> MFG


Gruss
MathePower

Bezug
                
Bezug
Extremwerte Berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Mi 13.01.2010
Autor: LowBob

Danke!

ich habe nicht gewusst, dass man den Lagrange-Formalismus auch auf beliebieg viele Nebenbediengungen anwenden kann.

Die Aufgabe habe ich mit dem Tip auf Anhieb gelöst. Auch wenn das Gleichungssystem zuerst ein wenig kniffelig war.

Gruß

Bezug
        
Bezug
Extremwerte Berechnen: Aufgabe 2)
Status: (Antwort) fertig Status 
Datum: 21:04 Mo 11.01.2010
Autor: MathePower

Hallo LowBob,

> Aufgabe 2.
>  
> Ich dachte, dass ich zunächst die ersten partiellen
> Ableitungen bilde und die gleich Null setze um x und y
> auszurechnen.
>  
> So habe ich für:
>  
> [mm]z_{x}=\cos(x)+\cos(x+y)[/mm]
>  
> [mm]z_{y}=\cos(y)+\cos(x+y)[/mm]
>  
> Setze ich nun z.B. [mm]z_{x}=0[/mm] und löse nach y auf, bekomme
> ich [mm]y=\bruch{\pi}{2}-2x[/mm]


Das muss hier [mm]y=\red{\pi}-2x[/mm] lauten.

  

> und wenn ich das nun in [mm]z_{y}=0[/mm] einsetze bekomme ich
> [mm]x=\bruch{\pi}{6}[/mm] und das ist ja laut Lösung falsch.
>  
> Kann mir da jemand weiterhelfen?
>  


> MFG


Gruss
MathePower

Bezug
                
Bezug
Extremwerte Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Mo 11.01.2010
Autor: LowBob

Hallo


Ok, dann mache ich wohl einen Fehler beim auflösen...

Ich schreibe mal wie ich es gemacht habe:

0=cos(x)+cos(x+y) |arccos

arccos(0)=x+x+y und das wird dann wohl falsch sein oder? Denn für arccos(0) bekomme ich [mm] \bruch{\pi}{2} [/mm]

und daher auch [mm] \bruch{\pi}{2}-2x [/mm]

Wie wäre es denn richtig vom Auflösen her?

Gruß



Bezug
                        
Bezug
Extremwerte Berechnen: Additionstheorem
Status: (Antwort) fertig Status 
Datum: 21:45 Mo 11.01.2010
Autor: Loddar

Hallo LowBob!


> 0=cos(x)+cos(x+y) |arccos
>  
> arccos(0)=x+x+y und das wird dann wohl falsch sein oder?

Das hast Du völlig richtig erkannt.

Wende auf [mm] $\cos(x+y)$ [/mm] zunächst ein []Additionstheorem an.


Gruß
Loddar


Bezug
                                
Bezug
Extremwerte Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 11.01.2010
Autor: LowBob

Hi

ich stehe völlig auf dem Schlauch...

Welches Additionstheorem ist schon klar.

0=cos(x)+cos(x)*cos(y)-sin(x)*sin(y)

Nur was ich dann damit anstellen soll weiß ich nicht. Trigonometrische Funktionen sind leider nicht meine Stärke...

Gruß



Bezug
                                        
Bezug
Extremwerte Berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Di 12.01.2010
Autor: Calli


>  
> 0=cos(x)+cos(x)*cos(y)-sin(x)*sin(y)
>  

Hey, es geht auch einfacher!;-)

$0=cos(x)+cos(x+y) => -cos(x)=cos(x+y)$

[mm] $\quad [/mm] mit [mm] -cos(x)=cos(\pi-x)$ [/mm]

Ciao Calli


Bezug
                                                
Bezug
Extremwerte Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:00 Di 12.01.2010
Autor: LowBob

Hallo,

vielen Dank erstmal für eure Mithilfe.

Ich bin mir nur leider noch immer nicht sicher was ich darf und was nicht.

Folge ich dem Vorschlag von Calli

>  
> [mm]0=cos(x)+cos(x+y) => -cos(x)=cos(x+y)[/mm]
>  
> [mm]\quad mit -cos(x)=cos(\pi-x)[/mm]
>  

erhalte ich ja

[mm] cos(\pi-x)=cos(x+y) [/mm] nehme ich hier arccos

wird daraus [mm] \pi-x=x+y \Rightarrow y=\pi-2x [/mm]

Was dann ja wohl richtig wäre.

Wieso darf ich aber aus 0=cos(x)+cos(x+y) nicht direkt den arccos nehmen? Und ist der arccos bei Produkten wie -cos(x) [mm] \Rightarrow [/mm] -x erlaubt?

Bitte nicht schlagen ;-)

Gruß

Bezug
                                                        
Bezug
Extremwerte Berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Di 12.01.2010
Autor: Calli


>  
> Wieso darf ich aber aus 0=cos(x)+cos(x+y) nicht direkt den
> arccos nehmen?

Weil
$arccos(u+v) [mm] \not= [/mm] arccos(u)+arccos(v)$

> Und ist der arccos bei Produkten wie -cos(x)
> [mm]\Rightarrow[/mm] -x erlaubt?

Auch das ist nicht richtig.
Wie gesagt:
[mm] $-\cos x=\cos(\pi-x)$ [/mm]
Und die Umkehrfunktion von cos (=arccos) ist:
[mm] $arccos[\cos (\pi-x)]=\pi-x$ [/mm]

Ciao Calli




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]