www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgaben
Extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 17:44 Di 21.10.2014
Autor: heiser16

Aufgabe
Gegeben ist die Funktion f mit [mm] f(x)=16-x^2 [/mm] . Der Graph dieser Funktion schließt mit der x-Achse eine Fläche ein. In dieser Fläche soll ein Rechteck liegen, dessen Seiten auf bzw. parallel zu den Koordinatenachsen liegen. Die beiden oberen Eckpunkte sollen auf dem Graphen liegen, die unteren Eckpunkte liegen auf der x-Achse.

a) Bestimme Nullstellen und Scheitelpunkt der Parabel.

b) Berechne wo die Eckpunkte liegen müssen, damit das Rechteck einen möglichst großen Flächeninhalt hat.

Was ich bis jetzt machen konnte war das:

A=2ab -> Ich weiß aber nicht wirklich, warum ich das a mal 2 nehme...

Nebenbedingung: [mm] b=f(a)=16-a^2 [/mm]

Zielfunktion: [mm] A(a)=32a-2a^3 [/mm]

Notwendigebedingung: A'(a)=0
                                      [mm] 32-6a^2=0 [/mm]

Hinreichende Bedingung: A'(a)=0 und A''(a) < 0
                                        A''(a)= -12a < 0

Und weiter komm ich nicht :/

        
Bezug
Extremwertaufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Di 21.10.2014
Autor: meili

Hallo,
du hast diese Frage zweimal verschickt.

Gruß
meili

Bezug
        
Bezug
Extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Di 21.10.2014
Autor: MathePower

Hallo heiser16,

> Gegeben ist die Funktion f mit [mm]f(x)=16-x^2[/mm] . Der Graph
> dieser Funktion schließt mit der x-Achse eine Fläche ein.
> In dieser Fläche soll ein Rechteck liegen, dessen Seiten
> auf bzw. parallel zu den Koordinatenachsen liegen. Die
> beiden oberen Eckpunkte sollen auf dem Graphen liegen, die
> unteren Eckpunkte liegen auf der x-Achse.
>  
> a) Bestimme Nullstellen und Scheitelpunkt der Parabel.
>  
> b) Berechne wo die Eckpunkte liegen müssen, damit das
> Rechteck einen möglichst großen Flächeninhalt hat.
>  Was ich bis jetzt machen konnte war das:
>  
> A=2ab -> Ich weiß aber nicht wirklich, warum ich das a mal
> 2 nehme...
>  


Der Flächeninhalt eines Rechtecks mit den
Seiten a und b ergibt sich zu A=a*b.


> Nebenbedingung: [mm]b=f(a)=16-a^2[/mm]
>  
> Zielfunktion: [mm]A(a)=32a-2a^3[/mm]
>  
> Notwendigebedingung: A'(a)=0
>                                        [mm]32-6a^2=0[/mm]
>  
> Hinreichende Bedingung: A'(a)=0 und A''(a) < 0
>                                          A''(a)= -12a < 0
>  
> Und weiter komm ich nicht :/


Löse A'(a)=0 nach a auch.

Wähle dann dasjenige a, für das A''(a)  < 0 ist.


Gruss
MathePower

Bezug
                
Bezug
Extremwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Di 21.10.2014
Autor: heiser16

Ich habe für a 2,31 raus, und das kann doch nicht sein oder?

Bezug
                        
Bezug
Extremwertaufgaben: kann doch sein
Status: (Antwort) fertig Status 
Datum: 18:22 Di 21.10.2014
Autor: Loddar

Hallo heiser!


> Ich habe für a 2,31 raus

[ok] Das ist zumindest eine Näherung.

Genau lautet das Ergebnis [mm] $a_{\max} [/mm] \ = \ [mm] \bruch{4}{\wurzel{3}} [/mm] \ = \ [mm] \bruch{4}{3}\wurzel{3}$ [/mm] .


Gruß
Loddar

Bezug
                                
Bezug
Extremwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Di 21.10.2014
Autor: heiser16

Ok, und wie genau mache ich dann weiter?

Bezug
                                        
Bezug
Extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Di 21.10.2014
Autor: Steffi21

Hallo, du hast jetzt bereits zwei Eckpunkte A und B, die an den Stellen [mm] x_1=-\bruch{4}{3}\wurzel{3}\approx-2,31 [/mm] und [mm] x_2=\bruch{4}{3}\wurzel{3}\approx2,31 [/mm] liegen

[Dateianhang nicht öffentlich]

Laut Aufgabe "Die beiden oberen Eckpunkte sollen auf dem Graphen liegen", jetzt sollte dir klar werden, was noch zu berechnen ist

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]