Extremwertaufgabe Abschlussprü < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:43 Fr 19.05.2006 | Autor: | Haase |
Aufgabe | Aufgabe 1:
[Dateianhang nicht öffentlich]
a)Wie groß ist die Breite w in Abhängigkeit von b, wenn das Volumen Maximal sein soll, indem man die Querschnittsfläche A maximiert?
b)In welchem Verhältnis stehen dann die Längen w und h?
c)Berechnen Sie die Längen w und h bei einer Blechbreite b von 10m(Blau-Dickgedruckt). |
Halla Allerseits!
Ich hatte heute meine Abschlussprüfung in Mathematik (Fachabi). Habe 5 verschieden Artige Aufgaben bekommen und 4/5 habe ich mit ziemlicher wahrscheinlichkeit richtig. Bei der ersten Aufgabe allerdings, bin ich mir >>sehr<< unsicher, ob ich Sie richtig gemacht habe, dehalb bitte ich euch, mir meine Lösung zu bestätigen oder diese zu berichtigen.
Mein Lösungsweg:
1.Hauptbedingung
A soll Max. sein!
A = h*w + [mm] w^2/4
[/mm]
2.Nebenbedingung
b=2h+2l // l ist bei mit die Schräge vom Dreieck
h=b/2-w/(Wurzel 2) //Zwischenrechnung: l = w /(Wurzel 2)
h in die Hauptbedingung:
[mm] A=b2/2-w^1/(Wurzel 2)+w^2/4
[/mm]
3.Funktionsgleichung A=f(w)
A=(1/4-1/(Wurzel [mm] 2))*w^2 [/mm] + b*w/2
4.Ableitungen [mm] A^1=f^1(w)=dA/dw
[/mm]
[mm] A^1=(1/2-2/(Wurzel [/mm] 2))*w^+b/2
[mm] A^2=(1/2-2/(Wurzel [/mm] 2))
5. Extremwertbestimmung Pmax: [mm] f^1(w)=0 [/mm] und [mm] f^2(w)<0, [/mm] da lok.Max.
[mm] f^1(w)=0 [/mm] => 0 =...
w=-b/2(1/2-2/(Wurzel 2))
w = 3,64m
h=b/2-w/(Wurzel 2) = 2,43m
w/h=3,64m/2,43m=1,5
w=1,5h
[mm] A=h*w+w^2/4=12,2m^2
[/mm]
[mm] f^2(w)=-0,914<0 [/mm] => lok.Max.
l=2,57m
Ich Danke euch im Vorraus für eure nette Hilfe!! :)
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:29 Sa 20.05.2006 | Autor: | Haase |
Oh nein!
Bis zum Part "w=-b/2(1/2-2/(Wurzel 2))" habe ich alles richitg. Nur leider war ich zu blöd zum rechnen. Wenn man die 10m für b eingibt, dann kommt nicht mein Ergebnis "w = 3,64m" raus, sondern "5,47m".
Damit ist:
w= 5,47m
h=1,13m
[mm] A=13,7m^2
[/mm]
So ein Mist, dann bekomme ich kaum Punkte für diese Aufgabe, da ich leider diesen Fehler gemacht habe und somit ist alles was danach kommt auch Falsch. Teilpunkte wird auch nicht viel verteilt, da ich unübersichtlich mit cos und tan beim Dreieck gerechnet habe, somit kann ich die "1" vergessen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:50 Sa 20.05.2006 | Autor: | Loddar |
Hallo Haase!
Du hast Deinen Rechenfehler ja bereits selber gefunden.
Zur "Vereinfachung" würde ich jedoch den Ausdruck [mm] $\bruch{1}{2}-\bruch{2}{\wurzel{2}}$ [/mm] zusammenfassen zu:
[mm] $\bruch{1}{2}-\bruch{2}{\wurzel{2}} [/mm] \ = \ [mm] \bruch{1}{2}-\bruch{2\wurzel{2}}{2} [/mm] \ = \ [mm] \bruch{1-2\wurzel{2}}{2}$
[/mm]
Damit ergibt sich auch: [mm] $w_E [/mm] \ = \ [mm] \bruch{b}{2\wurzel{2}-1} [/mm] \ [mm] \approx [/mm] \ 0.547*b$
Gruß
Loddar
|
|
|
|