www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert
Extremwert < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert: Rechteck
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 22.02.2011
Autor: noreen

Aufgabe
Die Punkte o(0/0), P(t/0),Q(t/f(t)), R(0/f(t)) sind Eckpunkte eines Rechtecks

Bestimme die Koordinaten des Punktes Q , so das der Flächeninhalt dieses Rechteckes maximal wird?

Könnt ihr mir helfen bei der Nebenbedingung und Zielfunktion?

ich kenne die Formel des Flächeninhaltes ( Rechteck) a*b

        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Di 22.02.2011
Autor: kamaleonti

Hi,
> Die Punkte o(0/0), P(t/0),Q(t/f(t)), R(0/f(t)) sind
> Eckpunkte eines Rechtecks
>  
> Bestimme die Koordinaten des Punktes Q , so das der
> Flächeninhalt dieses Rechteckes maximal wird?
>  Könnt ihr mir helfen bei der Nebenbedingung und
> Zielfunktion?
>  
> ich kenne die Formel des Flächeninhaltes ( Rechteck) a*b  

Die setzt du ein. Die eine Rechtecksseite hat die Länge t (entlang der x Achse) und die andere hat die Länge f(t).

Also [mm] A(t)=t\dot [/mm] f(t).

Was ist dein f?

Damit machst du dann ganz normal die Extremwertbestimmung.

Gruß


Bezug
                
Bezug
Extremwert: Rechteck
Status: (Frage) beantwortet Status 
Datum: 20:49 Di 22.02.2011
Autor: noreen

Aufgabe
Also auf meinem Zettel.. ist das Rechteck eingezeichnet...auf der x -Achse geht es bis 4 ..aber auf der y-achse ist es nicht genau abzulesen..
Habe vorher ein integral bestimmt..aber dort habe ich nur ein Fläche berechnet ..

?

Bezug
                        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Di 22.02.2011
Autor: Steffi21

Hallo, so wird dir keiner helfen können, stelle den genauen Wortlaut der Aufgabe ein, Steffi

Bezug
                                
Bezug
Extremwert: Extremwert
Status: (Frage) beantwortet Status 
Datum: 20:56 Di 22.02.2011
Autor: noreen

Aufgabe
Hatte bereits den genauen Wortlaut reingestellt ;)

Nur weiß ich leider nicht was f ist .. und versuche nur ein paar Informationen zu der Aufgabe zu geben.. was vorher schon gelöst wurde.. kann ja wohl kaum den ganzen Zettel online stellen ;)

Bezug
                                        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 22.02.2011
Autor: kamaleonti

Wie Steffi schon erwähnte.

Ohne Kenntnis von f, ist hier nicht viel zu machen.
So wie du uns die Aufgabe gestellt hast, können wir dir nicht weiter helfen.

Gruß

Bezug
                                                
Bezug
Extremwert: Extremwert
Status: (Frage) beantwortet Status 
Datum: 21:04 Di 22.02.2011
Autor: noreen

Aufgabe
mhh ich habe hier so viele Zahlen :(

Ich habe drei Ableitungen ..
- Eine Stammfunktion
- Integral + Flächeninhalt
-Extrem und Wendepunkte

Bezug
                                                        
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Di 22.02.2011
Autor: Steffi21

Hallo, verstehst du uns nicht, KEINE Zwischenergebnisse, die AUFGABE, bitte bitte, Steffi

Bezug
                                                        
Bezug
Extremwert: Extremwert
Status: (Frage) beantwortet Status 
Datum: 21:13 Di 22.02.2011
Autor: noreen

Aufgabe
Könnte eventuell

[mm] xe^{-2x} [/mm]

das ist f(x)

Kann das sein ?

Bezug
                                                                
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 22.02.2011
Autor: Steffi21

Hallo, du solltest doch wissen, welche Aufgabe du bearbeitest????!!!!!! heiteres Aufgabenraten machen wir nicht, nun aber Steffi

Bezug
                                                                        
Bezug
Extremwert: Extremwert
Status: (Frage) beantwortet Status 
Datum: 21:26 Di 22.02.2011
Autor: noreen

Aufgabe
ich weiß welche Aufgabe ich bearbeite ;)

nur leider ist hier kein f gegeben ;)
Oder leider weiß ich nicht was f sein soll....

Bezug
                                                                                
Bezug
Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Di 22.02.2011
Autor: leduart

Hallo
ohne f keine lösbare Aufgabe! Verlier mal ein paar mehr Worte, wenn du Hilfe willst.
Wahrscheinlich hast du ne längere Aufgabe mit 1. 2. 3. oder a)b)c)
Du teilst uns pro post nur einen winzigen Anteil mit, anscheinend schreibst du nicht gern. Wenn du von Anfang an die gesamte Aufgabe aufgeschrieben hättest, wär vieles einfacher.
du verdirbst es dir mir geduldigen Helfern, wenn es Informationen nur tröpfchenweise gibt.
Gruss leduart


Bezug
        
Bezug
Extremwert: Vermutung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:59 Mi 23.02.2011
Autor: Steffi21

Hallo noreen, ist deine Funktion eventuell [mm] f(x)=x*e^{-2x}, [/mm] die du hier auch bearbeitet hast, jetzt das Rechteck OPQR, du bekommst dann
[mm] A(t)=t*t*e^{-2t} [/mm] dann Extremwertbetrachtung machen Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]