www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Exponentialverteilung
Exponentialverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Herleitung Erwartungswert
Status: (Frage) beantwortet Status 
Datum: 08:09 Mo 13.01.2020
Autor: sancho1980

Hallo,

ich versuche mir den Erwartungswert [mm] \mu [/mm] = [mm] \bruch{1}{k} [/mm] der Exponentialverteilung mit Dichtefunktion

[mm] f(x)=\begin{cases} ke^{-kx}, & \mbox{für } x > 0 \\ 0, & \mbox{für } n \mbox{ sonst} \end{cases} [/mm]

herzuleiten. Jetzt ist f(x) = [mm] ke^{-kx} [/mm] ja nach oben hin unbeschränkt gültig, also müsste man doch [mm] \integral_{0}^{\infty}{x ke^{-kx} dx} [/mm] berechnen. Mein Ansatz war, das über den Grenzwert zu machen. Leider komme ich nicht auf das Ergebnis. Brauche ich hier einen anderen Ansatz oder habe ich mich "nur" verrechnet. Ich kann grad nicht den ganzen Rechenweg abtippen, aber das hier erhalte ich:

[mm] \integral_{0}^{\infty}{x ke^{-kx} dx} [/mm] = [mm] \limes_{g\rightarrow\infty} \integral_{0}^{g}{x ke^{-kx} dx} [/mm] = ... = [mm] \limes_{g\rightarrow\infty} \bruch{g}{e^{kg}} [/mm] - [mm] \bruch{1}{ke^{kg}} [/mm] + 1

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Mo 13.01.2020
Autor: fred97


> Hallo,
>  
> ich versuche mir den Erwartungswert [mm]\mu[/mm] = [mm]\bruch{1}{k}[/mm] der
> Exponentialverteilung mit Dichtefunktion
>  
> [mm]f(x)=\begin{cases} ke^{-kx}, & \mbox{für } x > 0 \\ 0, & \mbox{für } n \mbox{ sonst} \end{cases}[/mm]


Das soll wohl lauten:

[mm]f(x)=\begin{cases} ke^{-kx}, & \mbox{für } x > 0 \\ 0, & \mbox{für } x \mbox{ sonst} \end{cases}[/mm].

>  
> herzuleiten. Jetzt ist f(x) = [mm]ke^{-kx}[/mm] ja nach oben hin
> unbeschränkt gültig, also müsste man doch
> [mm]\integral_{0}^{\infty}{x ke^{-kx} dx}[/mm] berechnen. Mein
> Ansatz war, das über den Grenzwert zu machen. Leider komme
> ich nicht auf das Ergebnis. Brauche ich hier einen anderen
> Ansatz oder habe ich mich "nur" verrechnet. Ich kann grad
> nicht den ganzen Rechenweg abtippen, aber das hier erhalte
> ich:
>  
> [mm]\integral_{0}^{\infty}{x ke^{-kx} dx}[/mm] =
> [mm]\limes_{g\rightarrow\infty} \integral_{0}^{g}{x ke^{-kx} dx}[/mm]
> = ... = [mm]\limes_{g\rightarrow\infty} \bruch{g}{e^{kg}}[/mm] -
> [mm]\bruch{1}{ke^{kg}}[/mm] + 1


Das stimmt so nicht. Ohne Deine Rechnungen kann ich natürlich nicht sagen, was Du falsch gemacht hast.

Bestimme zunächst eine Stammfunktion von $x [mm] ke^{-kx} [/mm] $ mit partieller Integration.

Eine solche lautet F(x)= [mm] -e^{-kx}(x+ \frac{1}{k}). [/mm]

Dann berechne [mm] $\lim_{g \to \infty}(F(g)-F(0)). [/mm] Heraus kommt [mm] \frac{1}{k} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]