Existenz einer k-inearen Abb. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallöchen. Ist super Wetter, richtige Zeit um sich mit Mathe zu beschäftigen, aber irgendwie hab ich keinen richtigen Einfall, wie ich beweisen kann, das eine k-lineare Abbildung f:V* [mm] \otimes [/mm] V -->K, die jedes x* [mm] \otimes [/mm] x aus V* [mm] \otimes [/mm] V in <x*,x> überführt, existiert. V sei dabei ein K-Vektorraum. Wär echt lieb, wenn ihr mir ein wenig helfen könntet?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:41 So 05.06.2005 | Autor: | Nam |
kleine Verständnisfragen:
[mm]V^{\*}[/mm] ist hier der Dualraum von V und [mm]\otimes[/mm] das Tensorprodukt, oder? Dann ist [mm][/mm] sicher das Inzidenzprodukt?
Wenn ja, könnte man das nicht mit der universellen Eigenschaft des Tensorproduktes machen?
Für jede lineare Abbildung [mm]f: X \times Y \to Z[/mm] existiert genau eine lineare Abbildung [mm]f': X \otimes Y \to Z[/mm] mit [mm]f'(x \otimes y) = f(x, y)[/mm]
Wenn du [mm]f: V^{\*} \times V \to K[/mm] definierst durch [mm]f(x^{\*}, x) = [/mm], dann existiert also genau eine lineare Abbildung [mm]f': V^{\*} \otimes V \to K[/mm] mit [mm]f'(x^{\*}, x) = f(x^{\*}, x) = [/mm]
Aber keine Gewähr, ich blicke bei diesen Tensorprodukten noch nicht so ganz durch.
|
|
|
|